_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Курсовые > Вторично-ионная масса спектрометрия

Вторично-ионная масса спектрометрия

Страница: 4/5

            Точность  и  воспроизводимость результатов  измерений относительных  коэффициентов  ионной  эмиссии  в  ВИМС  оказывается  весьма   удовлетворительной  (в   контролируемых  условиях (5%).  Если  необходимая  точность  не обеспечивается,  то нет смысла и говорить о количественном  анализе.   Принимая во внимание сложность явления вторичной ионной эмиссии и существенные различия приборов ВИМС, трудно создать чисто теоретическую модель, пригодную для любых установок, образцов и условий анализа. Например, приборы   ВИМС не собирают все вторичные ионы и не обеспечивают прохождения через анализатор всегда одной и той же доли ионов. Это связано с зависимостью пропускания анализатора от начальной энергии частиц. Оказывается слишком много переменных для того, чтобы можно было правильно рассчитать все чисто теоретически. Поэтому любой метод количественных оценок должен содержать минимум переменных параметров и быть пригодным для каждого прибора ВИМС. Такой метод обязательно будет эмпирическим или полуэмпирическим по своему     характеру и потребует эталонов для определения чувствительности к тому или иному элементу.                            

            Чтобы успешно проводить количественный анализ методом, основанным на градуировке по эталону (да и вообще любым методом), важно стандартизировать рабочие параметры прибора: сорт первичных ионов, их ток, плотность тока и энергию, окружение образца, эффективность детектирования и энергетическую полосу пропускания анализатора вторичных ионов. Только тогда, когда эти условия фиксированы, приобретают какой-то смысл результаты анализа с использованием коэффициентов относительной   чувствительности   к   элементам,   полученных  для  эталонов  близкого  к  образцу  состава.  Если  скомбинировать  равенства  (1) и  (2)  и поделить  результат на  такое же  соотношение   для   эталонного   элемента,  чтобы   исключить  константы, то мы получим                                             

                   

                  (4)

                                                         

 где  iA± и iA± -  сигналы вторичных  ионов, а  СA и  Сэт- атомные концентрации   элемента   А  и   эталонного  элемента   в  матрице. Пользуясь   коэффициентами   относительной   чувствительности   jА, найденными  таким   образом,  можно   по  измеренным   ионным  сигналам   для   анализируемого   образца    вычислить   относительную атомную  концентрацию  элемента  в  нем:  (iA± /iA±) jА = СA /Сэт.  Все   относительные   атомные   концентрации    можно   нормировать к  100%,  и  тогда  мы  получим  состав  матрицы  в   атомных  процентах   при   условии,   что   порог   чувствительности  установки ВИМС  достаточен  для  регистрации  всех  основных  компонентов образца.  Метод,  описанный  выше,  в различных  вариантах применялся  для  объемного  анализа  различных  матриц.  В  общем   точность  такого   количественного  анализа   должна  составлять   10%.   Но   при  таком   методе  предъявляются   весьма  жесткие  требования  к  эталонам  и  к  однородности исследуемого образца.  Точность  подобных  измерений, естественно,  не выше, чем точность эталона или однородность образца.               

            Создать  эталоны  для  любых  матриц,  какие   только  могут встретиться,   невозможно.   Поэтому   необходимы  эмпирические способы,  которые  позволяли бы  по данным  для нескольких эталонных   образцов   определять   коэффициенты  чувствительности jА для  любой  матрицы.  Величина jА будет зависеть  от параметра  eS характеризующего   электронные   свойства  эмитирующей  ионы  поверхности.  Общий  характер  зависимости  jА(eS)  показан на  фиг. 12. Простейший  способ  оценки eS, состоит в нахождении eS = k(j1/j2), где k  - произвольная постоянная, а j1 и j2 - коэффициенты относительной  чувствительности  для  элементов 1  и 2,  так что  отношение j1 к j2  зависит  от   матрицы.  Информацию   об  eS содержащуюся  в  спектрах  вторичных  ионов,  дают также  отношения вторичных  ионов   М2+/М+,   МО+/М+,  МN+/М+.   Стандартизировав  условия функционирования  установки  и  собрав  экспериментальные  данные  типа  показанных на  фиг. 12 для эталонных  образцов, уже  можно  извлекать  из сигналов  вторичных ионов  достаточно точную количественную информацию почти при любой матрице (если только для нее известна величина eS).ъ

 

Фиг.12. Зависимость коэффициентов jА относительной чувствительности к разным элементам от типа поверхности образца[1].

            При определении величины eS, следует отдавать предпочтение тем способам, которые основаны исключительно на информации, содержащейся в спектрах вторичных ионов или отношениях величин пиков этих ионов в спектре для неизвестного образца, т.е. информации типа отношений интенсивностей ионов М2+/М+, МО+/М+, МN+/М+ (иди любых других), зависящих от eS,  но не зависящих от концентрации элементов. Кроме того, величину eS, можно рассчитать исходя из отношений ионных сигналов и концентраций двух или более компонентов, для которых  jА/jА’  зависит от матрицы. Подобный метод пригоден при обнаружении следов элементов в хорошо известной матрице. И наконец, можно просто выбрать величину eS  руководствуясь исключительно аналитическим опытом и интуицией. Такой способ не так уж плох, как могло бы показаться. По крайней мере исключаются грубые ошибки (фиг. 12).

            Единственный набор коэффициентов чувствительности позволяет определять концентрации с ошибкой не более чем в 2 раза  для большинства  элементов в  ряде весьма различающихся матриц.  Любая  модель,  которая  вводит  в  коэффициенты  относительной  чувствительности  поправку  на  влияние  матрицы,  может   лишь   улучшить   результаты.   Привлекательные   стороны  описанного  выше  подхода   таковы:  простая   модель,  которую  можно  использовать  в  любом  приборе  независимо   от  каких- либо  теоретических  или  физических  констант и  которая основывается  исключительно  на  эталонах  и  измерениях  в  данном приборе.                                                       

            Выше  основной  упор  мы  делали  на анализ  объемного состава  твердых  тел,  а не  тонких поверхностных  слоев. Поскольку объемный  состав  твердых   мишеней  можно   задать  достаточно точно,  они  и  служат  эталонами  для  проверки количественных  моделей.  Для  поверхностных  пленок толщиной  менее 50  А эталоны  либо  вообще  невозможно,  либо очень  трудно изготовить.

Следовательно,  количественные  данные  для  внешних 50  А можно  получить лишь  так же,  как и  в случае  объемного образца, когда нет эталона.                                            

 

Глубинные  профили концентрации  элементов

                  

            При  исследовании распределения  того или  иного элемента  по  слоям, параллельным  поверхности образца,  для обнажения  глубоколежащих слоев твердого тела in situ  в большинстве методов анализа поверхности (не  только ВИМС)  применяют распыление ионами.  При этом  разрешение по  глубине, обеспечиваемое  выбранным  методом анализа  поверхности, оказывается не  очень существенным,  поскольку разрешение  будет определяться  в основном  перемешиванием в  приповерхностных слоях и  другими  процессами,  сопровождающими   травление  поверхности.                                                     

            Разрешение  по глубине,  обеспечиваемое при  данном методе определения  профилей  концентрации,   можно  характеризовать тем уширением  профиля тонкого  поверхностного слоя  или резкой  границы  раздела  между  двумя  различными  материалами, которое  обусловлено самим  процессом измерения.  Если толщина  слоя  (или глубина  залегания границы  раздела) превышает примерно  2RP то  из-за  различных  факторов,  вызывающих уширение  измеряемого профиля  концентрации (приборных  и ионно-матричных эффектов), распределение  для тонкого  слоя оказывается  близким  к  нормальному распределению  со среднеквадратичным  отклонением  sR.  За  разрешение  по  глубине можно принять величину sR для этого  распределения. Если  слой толстый,  то  среднеквадратичное отклонение  sМ экспериментально наблюдаемого (измеренного) профиля  связано с  sR и sТ соотношением  s2М =  s2R+s2Т , где  sТ -  среднеквадратичное отклонение истинного распределения слоя. При sМ >>sТ , например в случае тонкого слоя, величина sR приблизительно равна разрешению sR метода по глубине.                            

            Если  принять,  что измеренный  профиль тонкого  слоя описывается  нормальным  распределением,  то  можно  рассмотреть и  случай уширения границы  раздела, и  его связь  с разрешением  по глубине. Это  разрешение можно  вычислить по  профилю ступенчатого  изменения  концентрации  (ширина  ступени  >> sR),  когда форма истинного  края ступени  похожа на  кривую интегрального  нормального  распределения   со  среднеквадратичным  отклонением st.  Если концентрация  изменяется резко  (st~0),  то разрешению по глубине sR соответствует величина  sm, половина  расстояния  между  глубинами,  отвечающими  84   и  16%  измеренной на опыте  высоты ступени.  В случае  граничной области со значительной  собственной шириной  (т. е.  со значительным st) разрешение по глубина дается формулой   sR =(s2m -s2t)1/2,  причем нужно  учитывать ошибки  в величинах  sm и st. Случай профиля слоя с  существенным sT можно рассчитать аналогично.                                               

            Все  сказанное  в  данном  разделе  касается  самых основных  физических  или  приборных  эффектов, связанных  с травлением  поверхности   ионным  пучком   и  проблемой   распыления  ионами  без  искажения  профиля  концентрации.  Поэтому  многое  из сказанного  относится  к  любому  из  методов  анализа  поверхности  с использованием ионного травления.                            

            Измерение  профилей  методом   ВИМС  сводится   к  регистрации  сигнала  вторичных  ионов  интересующего  нас  элемента как  функции   времени  распыления.   В  случае   однородной  матрицы  это  время,  выполнив  соответствующие   градуировочные  измерения  (распыление  пленки  известной  толщины,  измерения  глубины  кратера,  коэффициентов  распыления  и  т.д.),  можно  пересчитать  в  глубину  залегания  элемента.  Изменение интенсивности  вторичных  ионов не  всегда отражает  относительное изменение концентрации элемента; поэтому   нужна   осторожность   при   интерпретации   глубинных  профилей, особенно вблизи  самой поверхности,  т. е.  когда глубина меньше RP+2DRP,  а также  пленок, состоящих  из  различающихся по  составу слоев,  или матриц  с неоднородным  распределением  следов  элементов,  которые  способны  даже  при  малой  концентрации  сильно повлиять  на вторично-эмиссионные   свойства  образца.   В  последнем   случае  для  получения  результатов,   отражающих  реальную   ситуацию,  следует  обработать  измеренные  профили  так,  как   это  делается  при   количественной   интерпретации   интенсивности   вторичных  ионов.  Если это  невозможно, нужно  попытаться по  крайней  мере  проградуировать  интенсивность   вторичных  ионов изучаемого элемента по одному или нескольким элементам, равномерно распределенным в пленке. В общем абсолютная интенсивность вторичных ионов дает прямую информацию о

распределении элемента по глубине лишь при малых концентрациях примеси в аморфной или монокристаллической матрице с равномерно распределенными основными компонентами и лишь при глубинах под поверхностью, превышающих 50 А.

            Пригодность метода ВИМС для определения глубинного профиля наряду с его высокой чувствительностью к большинству элементов делает его весьма привлекательным как метод изучения тонких пленок, ионной имплантации и диффузии. Факторы, существенные при проведении глубинного анализа методом ВИМС,  могут быть  разделены на две группы: приборные и обусловленные особенностями сочетания ион - матрица.

                                        

Приборные факторы, влияющие на разрешение  по глубине при измерении профилей концентрации                       

 

            Получить  при  методе  ВИМС  надежные  сведения  о глубинном  профиле  можно  лишь в  том случае,  если поддерживается  постоянная интенсивность тока первичных ионов и обеспечивается однородность плотности тока пучка в той части поверхности, из  которой в  масс-анализатор отбираются  вторичные частицы. В     стационарном    сфокусированном     ионном    пучке     плотность    тока,   падающего   на   образец,   не   постоянна    по   сечению    пучка,   а следовательно,    и    распыление    поверхности    в    этих    условиях   не может   быть   равномерным.    Если   зона,    из   которой    поступает   информация,    охватывает    все    сечение    первичного   пучка,    то   вклад в   сигнал   ионов   с   краев   кратера    будет   искажать    профиль   концентрации элемента в приповерхностном слое (фиг. 13).                        

            Ошибки    такого    рода    устраняются    в    ВИМС    разными    способами    в    зависимости    от    конструкции    прибора.    В    устройствах, в     которых    не     предусмотрена    возможность     определять    распределение    элемента    по    поверхности,    обычно    расфокусируют   пучок так,  чтобы  его  сечение было больше анализируемой области или   вырезают  при помощи диафрагмы из расфокусированного пучка     определенный     участок     с    однородной     плотностью    тока. Иногда на поверхности мишени помещают тонкую маску из                         

материала, не дающего вторичных ионов, близких к анализируемым,  которая ограничивает вторичную  ионную эмиссию из областей неоднородной плотности первичного пучка.                 

           

                Фиг.13. Переменный профиль концентрации в приповерхностном слое с указанием                                              различных приборных факторов, которые приводят к искажению профиля по

                              сравнению с истинным распределением[1].

 

            Наиболее удовлетворительный способ решения проблемы - электрически развертывать сфокусированный ионный пучок в растр по достаточно большой площади поверхности мишени так, чтобы обеспечить в ее нейтральной части однородную плотность тока. При этом нужно уделить особое внимание системе развертки пучка: напряжение строчной и кадровой развертки должно изменяться линейно со временем, обратный ход пучка должен бланкироваться  или хаотизироваться, а скорость развертки должна быть согласована с размерами пучка, чтобы соседние строки растра перекрывались.

            Чтобы полностью использовать достоинства этого метода, необходимо ограничить зону отбора вторичных ионов областью  однородной плотности пучка. Осуществить это сравнительно просто в установках ВИМС, которые позволяют получать  сведения о распределении вещества по поверхности. В  сканирующей микрозондовой установке,  где  первичный  ионный пучок  малого диаметра разворачивается в растр по поверхности,  можно работать  в режиме,  в котором  система детектирования  регистрирует вторичные  ионы  лишь  при  прохождении лучом  выделенного “окна”.                    

            Даже тогда, когда зона, из которой  собирается информация, ограничена  областью  однородной  плотности тока,  имеется еще ряд   приборных  эффектов,   приводящих  к   искажению  формы профилей концентрации. К примеру, эффект  обратного  осаждения на мишень  ранее  распыленного  вещества:  материал, распыленный с краев кратера, оседает на его дне (в том числе  на поверхности анализируемой зоны) и затем  вновь распыляется  (фиг. 13). Такой  эффект  обычно существенен  лишь при  измерении “хвостов” профилей  с  малой  концентрацией  и сильно  ослабляется, если  увеличить крутизну  стенок кратера.  К аналогичным искажениям  профилей  концентрации  приводят  адсорбция  остаточных   газов,  или  эффекты  памяти установки.   Добавим, что любой фактор,  влияющий  на  анализ следов  элементов методом ВИМС (наложение пиков молекулярных ионов, химическая чистота первичного  ионного  пучка,  влияние  несфокусированного компонента  и  периферийных частей  пучка), также  может исказить профиль в области малых концентраций.

 

Влияние ионно-матричных эффектов  на разрешение по глубине при измерении профилей  концентрации

 

            Ряд эффектов, вызывающих ошибки при измерении профилей концентрации, связан с характеристиками каскада столкновений, создаваемого в твердом теле первичным ионом. Два таких эффекта - влияние средней глубины выхода вторичных ионов и перемешивание атомов в поверхностном слое. В большинстве случаев распределение анализируемых частиц простирается на глубину свыше 100 А. В этих условиях атомные перемещения в приповерхностном слое, внедрение атомов отдачи и иные связанные с матрицей эффекты вносят в искажение профилей концентрации значительно больший вклад, чем глубина выхода вторичных частиц.                                  

            Основными    параметрами,    определяющими    относительные  пробеги  частиц  в данной  пленке, являются  энергия первичных  ионов,  атомный  номер  Z и масса  А бомбардирующих  частиц и  атомов  мишени. Таким  образом, измеряемый  профиль концентрации должен зависеть от Z и  А первичных  ионов так  же, как  от их энергии.  Еще один  параметр, влияющий  на его  форму, - угол падения, т. е. угол между первичным  ионным пучком  и поверхностью мишени  (обычно этот  угол отсчитывают  от нормали  к  поверхности).  Увеличение  угла  падения приводит  к уменьшению  средней   глубины  проникновения   частиц  относительно  поверхности  образца  и, следовательно,  эквивалентно уменьшению энергии первичных ионов.