_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

TDA2006

TDA2006

12W AUDIO AMPLIFIER

DESCRIPTION

The TDA2006 is a monolithic integrated circuit in Pentawatt package, intended for use as a low frequency class ”AB” amplifier. At ±12V, d = 10 % typically it provides12Woutput poweron a 4W load and 8W on a 8W . The TDA2006 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates anoriginal (and patented)short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shutdown system is also included. The TDA2006 is pin to pin equivalent to theTDA2030.

TYPICAL APPLICATION CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Symbol   Parameter Value Unit
Vs Supply Voltage   ± 15 V
Vi Input Voltage   Vs  
Vi Differential Input Voltage   ± 12 V
Io Output Peak Current (internaly limited) 3 A
Ptot Power Dissipation at Tcase = 90 °C 20 W
Tstg, Tj Storage and Junction Temperature – 40 to 150 °C

THERMALDATA

Symbol Parameter Value Unit
Rth (j-c) Thermal Resistance Junction-case Max 3 °C/W

PIN CONNECTION

ELECTRICALCHARACTERISTICS

(refer to the test circuit ; VS = ± 12V, Tamb = 25oC unless otherwise specified)

Symbol Parameter Test Conditions Min. Typ. Max. Unit
Vs Supply Voltage   ± 6   ± 15 V
Id Quiescent Drain Current Vs = ± 15V   40 80 mA
Ib Input Bias Current Vs = ± 15V   0.2 3 mA
VOS Input Offset Voltage Vs = ± 15V   ± 8   mV
IOS Input Offset Current Vs = ± 15V   ± 80   nA
VOS Output Offset Voltage Vs = ± 15V   ± 10 ± 100 mV
Po Output Power d = 10%, f = 1kHz       W
    RL = 4W   12    
    RL = 8W 6 8    
d Distortion Po = 0.1 to 8W, RL = 4W, f = 1kHz   0.2   %
    Po = 0.1 to 4W, RL = 8W, f = 1kHz   0.1   %
Vi Input Sensitivity Po = 10W, RL = 4W, f = 1kHz   200   mV
    Po = 6W, RL = 8W, f = 1kHz   220   mV
B Frequency Response (– 3dB) Po = 8W, RL = 4W 20Hz to 100kHz  
Ri Input Resistance (pin 1) f = 1kHz 0.5 5   MW
Gv Voltage Gain (open loop) f = 1kHz   75   dB
Gv Voltage Gain (closed loop) f = 1kHz 29.5 30 30.5 dB
eN Input Noise Voltage B (– 3dB) = 22Hz to 22kHz, RL = 4W   3 10 mV
iN Input Noise Current B (– 3dB) = 22Hz to 22kHz, RL = 4W   80 200 pA
SVR Supply Voltage Rejection RL = 4W, Rg = 22kW, fripple = 100Hz (*) 40 50   dB
Id Drain Current Po = 12W, RL = 4W   850   mA
    Po = 8W, RL = 8W   500   mA
Tj Thermal Shutdown Junction       145 °C
  Temperature          

Figure 13 : Application Circuit with Spilt Power Supply

Figure 14 : P.C. Board and Components Layout of the Circuit of Figure 13 (1:1 scale)

Figure 15 : Application Circuit with Single Power Supply

Figure 16 : P.C. Board and Components Layout of the Circuit of Figure 15 (1:1 scale)

Figure 17 : Bridge Amplifier Configuration with Split Power Supply (PO = 24W, VS = ± 12V)

PRACTICAL CONSIDERATIONS

Printed Circuit Board

The layout shown in Figure 14 should be adopted by the designers. If different layout are used, the ground points of input 1 and input 2 must be well decoupled from ground of the output on which a rather high current flows.

Assembly Suggestion

No electrical isolation is needed between the package and the heat-sink with single supply voltage configuration.

Application Suggestion

The recommended values of the components are the ones shown on application circuits of Figure 13. Different values can be used. The table 1 can help the designers.

Table 1

Component Recommanded Value Purpose Larger Than Smaller Than
R1 22 kW Closed Loop Gain Setting Increase of Gain Decrease of Gain (*)
R2 680 W Closed Loop Gain Setting Decrease of Gain (*) Increase of Gain
R3 22 kW Non Inverting Input Increase of Input Decrease of Input
    Biasing Impedance Impedance
R4 1 W Frequency Stability Danger of Oscillation at  
      High Frequencies with  
      Inductive Loads  
R5 3 R2 Upper Frequency Cut-off Poor High Frequencies Danger of Oscillation
      Attenuation  
C1 2.2 mF Input DC Decoupling   Increase of Low
        Frequencies Cut-off
C2 22 mF Inverting Input DC   Increase of Low
    Decoupling   Frequencies Cut-off
C3C4 0.1 mF Supply Voltage by Pass   Danger of Oscillation
C5C6 100 mF Supply Voltage by Pass   Danger of Oscillation
C7 0.22 mF Frequency Stability   Danger of Oscillation
  1      
C8   Upper Frequency Cut-off Lower Bandwidth Larger Bandwidth
  2pBR1      
D1D2 1N4001 To Protect the Device Against Output Voltage Spikes.  

SHORT CIRCUIT PROTECTION

The TDA2006 has an original circuit which limits  the current of the output transistors. Figure 18 shows that the maximum output current is a functionof the collector emitter voltage ; hence the output transistors work within their safe operating area (Figure 19). This function can thereforebe considered as being peak power limiting rather than simple current limiting. It reduces the possibility that the device gets damaged during an accidental short circuit from AC output to ground.

THERMALSHUT DOWN

The presence of a thermal limiting circuit offers the following advantages :

1) an overload on the output (even if it is permanent), or an above l imi t ambient temperature can be easily supported since the Tj cannot be higher than 150°C.

2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.

If for any reason, the junction temperature increases up to 150 °C, the thermal shutdown simply reduces the power dissipation and the current consumption. The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance) ; Figure 22 shows the dissipable power as a function of ambient temperature for different thermal resistances.


_GOBACK

Микросхемы

Copyright © _BY Radioland - (3422 Прочтено)