_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

дополнительно по теме на сайте soft-4-free.ru
Студентам


Студентам > Курсовые > Управляемый микроконтроллером выпрямитель

Управляемый микроконтроллером выпрямитель

Страница: 3/4

ΔP = U0 * IB + Rд * Kф2 * IB2,

гдеU0 - пороговое напряжение (напряжение отсечки), В;

IB - среднее за период значение прямого тока вентиля. А;

Rд - динамическое (дифференциальное) сопротивление прямой вольт-амперной характеристики вентиля в открытом состоянии , Ом ;

Кф = Iэф / IB - коэффициент формы тока , протекающего через прибор;

Iэф и IB - среднее по модулю и эффективное значение прямого тока, протекающего через вентиль .

В этом случае дополнительными потерями обычно пренебрегают .

ΔP = 1,15 * 25 = 28,75 Вт.

2 Эквивалентная температура полупроводниковой структуры определяется выражением

Tp-n = Tc + ΔP * RT

где Тс - температура окружающей среды (или охлаждающего агента при принудительном охлаждении) , °С;

RT - общее установившееся тепловое сопротивление,

(зависит от типа охладителя и интенсивности охлаждения), °С/Вт.

Tp-n = 60 + 28,75 * 0,3 = 69°

выполняться условие нормальной работы прибора

Тр-п ≤ [ Тр-п ]

69° ≤ 125°

Регулировочная характеристика преобразователя

Регулировочная характеристика преобразователя представляет собой зависимость среднего значения выпрямленного напряжения от угла открывания вентилей а. Вид регулировочной характеристики определяется типом нагрузки (индуктивная или активная) и схемой силовой части преобразователя .

В идеальном преобразователе при чисто индуктивной нагрузке (Lн = ∞) изменение напряжения нагрузки от максимального значения Udo до нуля происходит при изменении угла открывания тиристоров в пределах от нуля до 90 эл. град, Теоретическая регулировочная характеристика таких преобразователей описывается уравнением ~

Uda=Udo*cosα,

где Udo — среднее значение выпрямленного напряжения при α=0.

При реальной активно-индуктивной нагрузке (LН≠α ) в таких преобразователях, если α > 90 эл. град., наступает режим прерывистого тока и средние значения тока и напряжения нагрузки не равны нулю.

При чисто активной нагрузке (LН = 0) диапазон регулирования угла открывания вентилей и вид регулировочной характеристики преобразователя меняются.

Теоретическая регулировочная характеристика при чисто активной нагрузке описывается уравнениями:

для трехфазной мостовой схемы

Uda = Udo*cos α при 0°< α <60°;

Uda = Udo*[ l+cos(600 + α)] при 60°< α < 120.

Регулировочная характеристика

Ua

Ub

Uc

Расчёт системы управления тиристорами

Выберем по справочнику прибор со следующими параметрами:

· Тип прибора – КТ616А

· Максимальная рассеиваемая мощность коллектора – 0,3 вт.

· Максимальное напряжение коллектор-эмиттер - 20 В.

· Максимальное напряжение коллектор-база - 20 В.

· Максимальное напряжение эмиттер-база - 4 В.

· Максимальный постоянный ток коллектора - 400 мА.

· Максимальный импульсный ток коллектора - 600 мА.

· Статический коэффициент передачи тока в схеме с общим эмиттером - 40

· Напряжение насыщения коллектор-эмиттер при постоянном токе базы - 0,6 В.

· Граничная частота коэффициента передачи тока - 100 МГц.

Минимальное напряжение на коллекторе транзистора снижается до значения

Uк.мин = Uд.см + Uке.нас

Uк.мин = 0,7 + 0,6 = 1,3 В.

Значение резистора, задающего ток управления тиристором, определим по формуле

Rx2 = (Uп - Uк.мин) / Iу

Rx2 = (10 – 1,3) / 200 мА = 40 Ом.

Для обеспечения ключевого режима работы транзистора минимальный ток базы определим по формуле

IБ > IК / β

IБ > 200 мА / 70 = 2,9 мА.

Rx4 – резистор, задающий начальный ток на диоде смещения

Rx4 = Uп / Iд

Rx4 = 10 / 0,01 = 1 кОм.

Rx3 – резистор, обеспечивающий быстрое рассасывание электронов в базе транзистора

Rx3 = Uсм / IКБ0

Rx3 = 2 / 0,1 мА = 20 кОм.

Максимальное значение резистора, ограничивающего ток управляющего импульса, поступающего на базу по формуле

Rx1 < R2 / 10

Rx1 < 20 / 10 = 2 кОм.

Выходная нагрузочная способность микроконтроллера ограничивает минимальное значение резистора, ограничивающего ток управляющего импульса, поступающего на базу, рассчитываемое по формуле

Rx1 > U / I

Rx1 > 5 / 20 мА = 250 Ом.

Значение резистора, удовлетворяющее обоим условиям выберем равным 1 кОм.

Длину управляющих импульсов определим по формуле

tи ≥ tвкл=100 мкс.

Расчёт параметров компонентов схем питания.

Подберём диод VD1 по максимальному току, прямому току > 800 мА.

Выберем по справочнику прибор со следующими параметрами:

· Тип прибора – Д302

· Среднее за период значение прямого тока диода - 1 А.

· Прямое обратное напряжение диода - 200 В.

· Значение максимально допустимой частоты - 5 кГц.

Определим ёмкость Фильтрующего конденсатора С1 по длине периода RC – фильтра

5 /RC < f

5/ (20 * 6300 мкФ) < 50 Гц

Выберем электролитический конденсатор: 6300 мкФ x 16 В.

Питание для контроллера построим на стабилизаторе КР142ЕН5А и конденсаторах С4 : 0,1 и С5 100x10.

Выбор микроконтроллера и расчёт параметров его периферийных устройств

Требования, предъявляемые к микроконтроллеру:

  • Наличие внутренней памяти программ и ОЗУ.
  • Наличие EEPROM (Электрически перепрограммируемая память) – для хранения при отключении питания введённых значений уровня регулируемого напряжения и режима работы;
  • Наличие сторожевого таймера для обеспечения гарантированно надёжной работы микроконтроллера.
  • Наличие внутрисхемно реализованного АЦП.
  • Наличие USART приёмо-передатчика для возможности управления и контроля на расстоянии или с помощью компьютера.