_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

http://omg-gift.ru/ подарочная упаковка купить оптом подарочная упаковка оптом москва.
Студентам


Студентам > Рефераты > Технология получения монокристаллического Si

Технология получения монокристаллического Si

Страница: 2/6

· Поверхностные дефекты

К поверхностным дефектам относятся:

· границы зерен монокристаллов,

· двойниковые границы.

Двойникование - изменение ориентации кристалла вдоль некоторой плоскости, называемой плоскостью двойникования BC (см. рис. 1). Эти дефекты возникают в процессе роста в определенных частях кристаллического слитка. Для производства ИС такие кристаллы не используют, их отбраковывают.

· Объемные дефекты в кремнии

Одним из проявлений трехмерных нарушений в кристаллической решетке являются микродефекты и преципитаты (фаза, в которой выделяются примесные атомы, в случае превышения уровня растворимости в веществе при данной температуре).

При росте кристаллов кремния с очень низкой плотностью дислокаций возникает тип дефектов, которые, вероятно, характерны исключительно для полупроводниковых кристаллов и в настоящее время интенсивно исследуются. Из-за малого размера их называют микродефектами. Картина распределения микродефектов в поперечном сечении кристалла обычно имеет вид спирали, поэтому ее называют swirl-картиной. Swirl по-английски означает "воронка, спираль". Swirl-картина обнаруживается и в кристаллах выращенных по методу Чохральского и в кристаллах зонной плавки независимо от их кристаллографической ориентации. Впервые такие дефекты наблюдались при избирательном травлении пластин бездислокационного кремния. В них обнаружены дефекты, отличающиеся от дислокаций, дефектов упаковки, двойников, преципитатов и межзеренных границ. Они давали фигуры травления, названные "некристалографическими" или "пустыми" ямками травления. Некристаллографические ямки не имеют определенной ориентации относительно кристалла или друг друга. Они имеют плоское дно и, следовательно, обусловлены вытравливанием локализованных, приблизительно сферических дефектов, отличных от дислокаций, которые являются линейными дефектами и дают при травлении "глубокие" ямки в местах своего выхода на поверхность.

В исследованных кристаллах с помощью рентгеновской топографии и избирательного травления были идентифицированы два типа микродефектов, отличающихся по размеру и концентрации. Микродефекты большого размера, названные А - дефектами, располагаются главным образом в областях, удаленных от поверхности кристалла и от краев пластин. Микродефекты меньшего размера (В - дефекты) наблюдаются во всем объеме кристалла вплоть до самой боковой его поверхности.

Этапы производства кремния

Технология получения монокристаллов полупроводникового кремния состоит из следующих этапов:

1. получение технического кремния;

2. превращение кремния в легколетучее соединение, кото­рое после очистки может быть легко восстановлено;

3. очистка и вос­становление соединения, получение кремния в виде поликристалли­ческих стержней;

4. конечная очистка кремния методом кристаллиза­ции;

5. выращивание легированных монокристаллов

Основные этапы производства кремния

Получение технического кремния

Исходным сырьем для большинства изделий микроэлектронной промышленности служит электронный кремний. Первым этапом его получения является изготовление сырья, называемого техническим (металлургическим) кремнием.

Получение металлургического кремния

Этот технологический этап реализуется с помощью дуговой печи с погруженным в нее электродом. Печь загружается кварцитом SiO2 и углеродом в виде угля, щепок и кокса. Температура реакции Т = 1800 0С, энергоемкость W = 13 кВт/час. В печи происходит ряд промежуточных реакций. Результирующая реакция может быть представлена в виде:

SiC(тв) + SiO2(тв) → Si(тв) + SiO2(газ) + CO(газ) (1)

Получаемый таким образом технический кремний содержит 98 —99 % Si, 1 —2 % Fe, Аu, В, Р, Са, Cr, Cu, Mg, Mn, Ni, Ti, V, Zn и др.

Получения трихлорсилана (ТХС)

Современная технология поликристаллического кремния основана на процессе водородного восстановления трихлорсилана, восстановления тетрахлорида кремния цинком и пиролиза моносилана, Большую часть кремния (около 80 %) получают путем водородного восстановления трихлорсилана (ТХС). Достоинства этого процесса — легкость и экономичность получения ТХС, эффективность очистки ТХС, вы­сокое извлечение и большая скорость осаждения кремния (извле­чение кремния при использовании тетрахлорида кремния состав­ляет 15 %, а при использовании ТХС — не менее 30 %), меньшая себестоимость продукции.

Трихлорсилан обычно получают путем гидрохлорирования крем­ния: взаимодействием технического кремния с хлористым водоро­дом или со смесью газов, содержащих хлористый водород, при тем­пературе 260—400 °С.

Процесс синтеза трихлорсилана сопровождается побочными реакциями образования тетрахлорида кремния и других хлорсила-нов, а также галогенидов металлов, например АlСl3, ВСl3, FeCl3 и т.д. Реакции получения хлорсиланов кремния являются обрати­мыми и экзотермическими:

Si(T) + ЗНСl(Г) → SiHCl3(Г) + H2(Г) (2)

Si(T) + 4НСl(Г) → SiCl4(Г) + 2Н2(Г) (3)

При температуре выше 300 °С ТХС в продуктах реакций почти полностью отсутствует. Для повышения выхода ТХС температуру процесса снижают, что приводит к значительному замедлению ско­рости реакции (3). Для увеличения скорости реакции (2) ис­пользуют катализаторы (медь, железо, алюминий и др.). Так, на­пример, при введении в исходный кремний до 5 % меди содержание ТХС в смеси продуктов реакции при температуре 265 °С доходит до 95 %.

Синтез ТХС ведут в реакторе «кипящего» слоя, в который сверху непрерывно подают порошок технического кремния с размером час­тиц 0,01 — 1 мм. Псевдоожиженный слой частиц толщиной 200 — 600 мм создают встречным потоком хлористого водорода, который поступает в нижнюю часть реактора со скоростью 1 —8 см/с. Этим самым обеспечивается перевод гетерогенного химико-технологического процесса из диффузионной в кинетическую область. Так как процесс является экзотермическим, то для стабилизации режима в заданном интервале температур осуществляют интенсивный отвод теплоты и тщательный контроль температуры на разных уровнях псевдоожиженного слоя. Кроме температуры контролируют расход хлористого водорода и давление в реакторе.

Значительное влияние на выход ТХС оказывает присутствие примесей воды и кислорода в исходных компонентах. Эти примеси, окисляя порошок кремния, приводят к образованию на его поверх­ности плотных слоев SiO2, препятствующих взаимодействию крем­ния с хлористым водородом и соответственно снижающих выход ТХС. Так, например, при увеличении содержания Н2О в НСl с 0,3 до 0,4 % выход ТХС уменьшается с 90 до 65 %. В связи с этим хлористый водород, а также порошок кремния перед синтезом ТХС проходят тщательную осушку и очистку от кислорода.