_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Оптические системы светоизлучающих диодов

Оптические системы светоизлучающих диодов

Страница: 3/5

7. Создание многослойных структур переменного состава, позволяющих получить направленные световые потоки и суженную диаграмму направленности излучения.

Большие возможности получения направленных световых потоков создает эффект “оптического ограничения”, возникающий в двойных гетероструктурах из-за различий в показателях преломления полупроводников различного состава. Эффекту оптического ограничения, или волноводному эффекту, благоприятствует такое распределение показателя преломления, когда он больше в волноводном слое по сравнению с окружающими слоями. Фотоны, генерируемые в активной области, распространяются вдоль волновода с многократным отражением от границ с ограничивающими слоями. Достаточное оптическое ограничение излучения достигается различием показателей преломления волновода и ограничивающих слоев около 0,15—0,2. Вследствие эффекта оптического ограничения резко уменьшаются дифракционные потери излучения, а также сужается диаграмма направленности излучения в направлении, перпендикулярном плоскости р—n-перехода. Сужение диаграммы направленности излучения позволяет повысить эффективность ввода излучения в волокно в системах оптической связи.

Примеры конструкции светодиодов с различными КСС

Вышеперечисленные пункты относились в основном к конструктивным особенностям непосредственно тела свечения. Рассмотрим теперь пути изменения КСС при помощи внешней (надкристальной) оптики.

Пример конструкции СИД с характерными размерами дан на рис. 1 Приложения. Активная область свечения имеет площадь порядка 1мм2. Полимерный купол СИД представляет собой линзу, назначение которой – обеспечение требуемой диаграммы направленности свечения и механическая защита кристалла-излучателя. Кроме того, в полимере могут быть диспергированы зёрна люминофора, изменяющего цвет свечения. Так, например, если к собственному голубому излучению полупроводникового кристалла добавить жёлто-зелёную линии спектра люминофора, то возможно получить СИД белого свечения. Концентрация люминофора или его состав может изменяться, удовлетворяя, таким образом, требованию на цвет излучения СИД.

Конструкция мощных светодиод­ных осветителей (рис. 1) создавалась на основе ножки с увеличен­ным теплоотводом за счет наварен­ной медной пластины. Полимерный корпус (показатель преломления n = 1,55) содержит полусферическую линзу диаметром 18 мм. Для сбора и преобразования бокового излучения кристаллов используется отража­тель, согласованный по размерам с полимерной линзой. Отношение вы­соты полимерной линзы над крис­таллами S к радиусу полимерной линзы R в сочетании с действием от­ражателя определяют полуширину пространственного распределения силы света 2q0.5.

Светодиодные осветители (СО) могут со­держать либо 1 кристалл (например, прибо­р типа У-345Бл), либо 3 кристалла, сое­диненные последовательно (тип У-342Бл), либо 4 кристалла, соеди­ненные последовательно — парал­лельно (тип У-337Бл). Типичные КСС таких осветителей представлены на рис.2 Приложения. Из рисунка видно, что увеличение количества кристаллов приводит к уширению КСС и, естественно, к увеличению светового потока.

Широкие КСС применимы в элементах общего освещения, когда необходимо, чтобы возможно больший поток попадал на как можно большую площадь. Наоборот, узкие КСС применяются в источниках мононаправленного излучения: оптические дальномеры и указатели, источники информации ВОЛС (волоконно-оптических линий связи). Как правило, осветительные приборы на СИД представляют собой «кассету» из нескольких диодов (рис.3), в то время как СИД для ВОЛС, генераторы опорного напряжения оптикоэлектронных систем, оптопары представляют собой единичные элементы.

Кроме формирования определенной КСС, необходимо минимизировать потери светового потока. Для этого в конструкции предусматривается линзовый или зеркально-линзовый оптический элемент (ОЭ), как указывалось выше, из полимерного материала, одновременно увеличивающий квантовый выход излучения и служащий механической защитой излучающего кристалла.

В системах, передающих энергию на большие расстояния (до нескольких км), уменьшение угла рассеяния имеет решающее значение (уменьшение размытия информационного импульса). Проектирование ОЭ, обеспечивающих малые углы, представляет некоторое затруднение. Это, в первую очередь, связано с тем, что источником излучения является поверхность кристалла диаметром около 1 мм. Поток излучения сосредоточен в полусфере и его распределение может иметь случайный характер. Иногда максимум энергии сосредоточен в боковых зонах.

Можно проанализировать различные варианты оптических схем, потенциально пригодных для использования совместно с СИД, и сформулировать следующие требования к ОЭ [4]:

1. ОЭ должен перераспределять излучение СИД, направленное в полусферу, в заданном угле.

2. Угол расходимости излучения должен быть минимальным.

3. Потери излучения в ОЭ (за счет поглощения и рассеяния) должны быть минимальными.

4. ОЭ должен позволять осуществлять теплообмен.

5. Конструкция ОЭ должна быть достаточно простой и технологичной.

Предложен ряд конструкций ОЭ [4], работающих совместно с излучающим кристаллом и позволяющих получать малые углы излучения. Во всех конструкциях излучающий кристалл помешается в фокусе ОЭ. При этом любой луч после ряда отражений и преломлений выходит из ОЭ параллельно оптической оси.

1. В [4] описана конструкция ОЭ, имеющего три рабочие поверхности (a, b, c) сложной асферической формы (рис.4). Особенностью конструкции является то, что отражение от поверхности b осуществляется либо на зеркальном, либо на прозрачном участке за счет полного внутреннего отражения.

2. Там же рассмотрена конструкция ОЭ со сферической (а), эллиптической (b), параболической (c) и плоской (d) поверхностями (рис. 5).

3. На рис. 6 показана конструкция [2] ОЭ с поверхностями в виде сферы (а), параболы (b), w-образного аксикона (c) и плоскости (d).

Математическое моделирование конструктивных и оптических пара­метров, а также анализ технологиче­ских факторов показал [2], что наиболее высокие характеристики по п.п. 1-5 можно получить, используя конструк­цию по рис. 4. При этом размер излу­чающей площадки не должен превы­шать 1мм, а световой диаметр ОЭ дол­жен быть не более 40—60 мм.

Изготовлена [2] опытная партия ОЭ с конструкцией по рис.4. Диаметр ОЭ составляет 40 мм, тол­щина 11,6 мм. Высокое качество полу­чаемой оптической поверхности (ко­эффициент диффузного рассеяния в видимом диапазоне не превышал 0,7%) позволило использовать весь арсенал вакуумных оптических покрытий. Сре­ди них серебряные отражающие по­крытия с коэффициентом зеркального отражения в видимом и ближнем ИК-диапазоне до 97%. Разработаны просветляющие покрытия, которые дополнительно повышают механиче­скую прочность и атмосферостойкоеть поверхности, а также заметно, на 10—20%, уменьшают доступ УФ-излучения в массу полимера, замедляя про­цессы старения. Излучающий кри­сталл помещен внутри ОЭ в иммерси­онной среде. Потери излучения в ОЭ не пре­вышают 10% (в оптимальном варианте около 6%), а угол расхождения выходя­щего излучения составляет 2q0.5=2°. На кристалле с силой света около 500 мКд удается получить осевую силу света более 500 кд, т.е. достигается кон­центрация излучения СИД примерно на три порядка.