_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Основные типы диэлектриков, применяемых в производстве конденсаторов

Основные типы диэлектриков, применяемых в производстве конденсаторов

Страница: 4/7

По своему применению бумажные пропитанные конден­саторы подразделяются на следующие группы: блокиро­вочные, буферные, шунтирующие, конденсаторы связи и фильтровые.

Металлобумажные конденсаторы

Конструкция металлобумажных конденсаторов такова, что воздушные зазоры между бумагой и обкладками, существующие в обычных бумажных фольговых конденсаторах, полностью исключаются. Эти конденсаторы были разработаны и освоены производстве в конце 40-х годов. В металлобумажном конденсаторе одна сторона бумаги металлизируется перед намоткой. При номинальном напряжении до 600 В такие конденсаторы имеют меньший размер, чем бумажные пропитанные конденсаторы того же номинала. Это преимущество особенно заметно при номинальных напряжениях до 100 В постоянного тока и емкостях выше 0,01 мкФ, когда уменьшение объема может достигать 75%. |

Кроме того, если при воздействии напряжения происходят пробой и короткое замыкание обкладок, то в металлобумажных конденсаторах происходит процесс самовосстановления электрической прочности. При пробое бумаги очень тонкий слой металла быстро испаряется вокруг места пробоя, предотвращая образование постоянного короткого замыкания. Максимальное напряжение, при котором еще сохраняется самовосстановление, определяет величину испытательного напряжения. Максимальное напряжение, которое может быть кратковременно приложено к выводам конденсатора без его разрушения, называется напряжением искрения. Это максимальное напряжение следует прикладывать не более чем на несколько секунд, в противном случае непрерывное искрение быстро разрушит конденсатор.

Постоянная времени металлобумажных конденсаторов при 25° С составляет от 250 до 2000 Мом *мкФ, т. е. обычно в 6—10 раз меньше, чем у бумажных фольговых конденсаторов, хотя некоторые вновь разработанные типы и срав­нимы с фольговыми. Металлобумажные конденсаторы нельзя применять для емкостной связи контуров, но можно использовать в цепях развязки или сглаживания, когда основным требованием является малая величина полного сопротивле­ния.

На переменном токе металлобумажные конденсаторы следует использовать с осторожностью. Номинальное напряжение постоянного тока не может быть просто пересчи­тано на величину напряжения переменного тока. Коэффициент пересчета, принятый для конденсатора какого-либо определенного номинала, может не подойти для конденсаторов с другими размерами, другим номинальным напряжением или иным типом конструкции. Допускаемые величины напряжения переменного тока для металлобумажных и бумажных фольговых конденсаторов различны в связи с плохой теплопроводностью металлизированных секций. Амплитудное напряжение при частоте 60 или 400 Гц никогда не должно превышать величину номинального напряжения постоянного тока. Это ограничивает величину переменного напряжения при малых емкостях, но при емкости выше 10 мкФ надо уже учитывать опасность разогрева конденсатора. В этом случае предельное номинальное напряжение можно повысить, улучшив отвод тепла от пакета секций к корпусу конденсатора.

Металлобумажные конденсаторы нельзя использовать в тех случаях, когда происходят частые перенапряжения, так как при этом могут снизиться емкость и сопротивление изоляции и возрасти тангенс угла потерь. Если два конден­сатора соединены параллельно, то обычно к каждому из них последовательно подключается сопротивление 1 КОм для подавления перенапряжения, которое могло бы возник­нуть при пробое одного из конденсаторов и повредить второй.

Коэффициент мощности металлобумажных конденсато­ров при 25° С и частоте 1 КГц находится в пределах от 0,005 до 0,015.

Слюдяные конденсаторы

Слюдяные конденсаторы изготовляют, набирая их в виде стопки из очень тонких пластинок слюды, переложенных слоями фольги, или нанося слой серебра непосредственно на поверхность слюдяных пластинок для уменьшения колебания емкости от термического расширения за счет удаления воздуха из зазоров между диэлектриком и обкладками. Стопку затем сжимают, присоединяют выводы и конденсатор опрессовывают пластмассой или покрывают слоем компаунда для защиты от механических повреждений и воздействия окружающей среды.

Конденсаторы имеют следующие характеристики:

1) цена более высокая, чем у бумажных конденсаторов;

2) коэффициент мощности при 25° С и 1 КГц равен 0,001, при 1 МГц уменьшается до 0,0002;

3) добротность Q высокая, обычно порядка 2500 при емкости от 100 до 1000 пФ при 1 МГц; при более высоких и более низких значениях емкости уменьшается;

4) удельная емкость низкая по сравнению с бумаж­ными конденсаторами;

5) рабочее напряжение постоянного тока: возможно получение высоких номинальных напряжений;

6) отклонение емкости от номинала (первоначальное) небольшое, до ±0,25%.

Важнейшими характеристиками слюдяных конденсато­ров являются малый угол потерь (в широком диапазоне частот), высокое рабочее напряжение, малое изменение емкости с температурой и при старении. Стабильность конденсаторов из серебрёной слюды выше стабильности конденсаторов фольгового типа, которые после 10 лет работы при комнатных условиях давали изменение емкости ±3% (даже в случае образцов хорошего качества). Прецизионные слюдяные конденсаторы, используемые в качестве вторичных образцов емкости, были изготовлены с допуском менее 0,01% при значениях емкости более 1 мкФ. Их герметизируют для защиты от влияния окружающей среды на стабильность емкости. Конденсаторы этого типа имеют высокое постоянство емкости во времени: после 10 000 ч испытания при комнатной температуре емкость конденса­торов с номиналом 10 000 пФ осталась неизменной с точ­ностью ±0,2 пФ. Температурный коэффициент мал, и величина его зависит: от метода стяжки стопки пластин и типа обжимок; от месторождения и качества обработки слюдам от типа конструкции конденсатора (фольговый тип или из серебрёной слюды).

Слюдяные серебрёные конденсаторы имеют лучшую температурную стабильность, чем конденсаторы с обклад­ками из фольги, поэтому группы повышенного качества обычно изготовляются из серебрёной слюды. Оба типа показывают небольшое необратимое изменение ем­кости после температурных циклов, но это явление сильнее выражено у конденсаторов с фольговыми обкладками. У большинства типов слюдяных конденсаторов зависимость изменения емкости от температуры несколько отклоняется от линейной. Средние значения температурных коэффициентов для различных образцов одной и той же партии колеблются в относительно широких пределах. Хорошие температурные коэффициенты при стабильности емкости ±0,05% могут быть полу­чены у конденсаторов, которые для герметизации окунают компаунд и применяют теперь в транзисторной технике. Сопротивление изоляции слюдяных конденсаторов, так же как и других типов, уменьшается с повышением температуры. В настоящее время слюдяные конденсаторы изготовляются для работы при номинальном напряжении и температуре окружающей среды 125 и 150 °С.

Конденсаторы из серебрёной слюды допускают мень­шую нагрузку током, чем конденсаторы из фольги, поэтому они менее пригодны для работы при больших токах. Это ограничивает их применение при радиочастотах и в им­пульсных схемах. Испытание конденсаторов показало, что при хранении в условиях относительной влажности 40—50% и температуры 25±2° или 50 ± 2° С в течение 18 месяцев их характеристики изме­няются незначительно. Однако после хранения в течение 6 месяцев при 50 ± 2° С и относительной влажности 90—95% некоторые конденсаторы пришли в полную не­годность. При проверке электрической прочности и сопро­тивления изоляции через все образцы протекал чрезмерно большой ток, что практически соответствовало короткому замыканию обкладок.