_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > Процессоры нового поколения и перспективы их развития

Процессоры нового поколения и перспективы их развития

Страница: 1/5

 

                            2Содержание

 

     Вступление                                               2

     Два кристалла в одном корпусе                            3

     Pentium как точка отсчета                                4

     Основная проблема на пути повышения производительности   5

     Решение принятое в P6                                    6

     Архитектура P6                                           7

         1. Устройство выборки/декодирования                  7

         2. Устройство диспетчирования/выполнения             8

         3. Устройство отката                                 9

         4. Интерфейс шины                                   10

         5. Вывод                                            11

     P6 как платформа для построения мощных серверов         12

     Системы на основе P6                                    13

     Следующее поколение процессоров                         14

     Заключение                                              17

     Приложения                                              18

     Литература                                              22

.

                              - 2 -

 

 ш1.1

                            2Вступление

 

     Все IBM-совместимые  персональные  компьютеры укомплектованы

Intel-совместимыми процессорами.  История развития микропроцессо-

ров семейства Intel вкратце такова.  Первый универсальный микро-

процессор фирмы Intel появился в 1970 г.  Он назывался Intel 4004,

был  четырехразрядным и имел возможность ввода/вывода и обработки

четырехбитных слов. Быстродействие его составляло 8000 операций в

секунду.  Микропроцессор Intel 4004 был рассчитан на применение в

программируемых калькуляторах с памятью размером в 4 Кбайт.

     Через три года фирма Intel выпустила процессор 8080, который

мог выполнять уже 16-битные арифметические операции, имел 1б-раз-

рядную адресную шину и, следовательно, мог адресовать до 64 Кбайт

памяти (2 516 0=65536).  1978 год ознаменовался выпуском  процессора

8086 с размером слова в 16 бит (два байта),  20-разрядной шиной и

мог оперировать уже с 1  Мбайт  памяти  (2 520 0=1048576,  или  1024

Кбайт),  разделенной на блоки (сегменты) по 64 Кбайт каждый. Про-

цессором 8086 комплектовались компьютеры,  совместимые с IBM PC и

IBM  PC/XT.  Следующим крупным шагом в разработке новых микропро-

цессоров стал появившийся в 1982 году процессор 8028б. Он обладал

24-разрядной адресной шиной, мог распоряжаться 16 мегабайтами ад-

ресного пространства и ставился на компьютеры,  совместимые с IBM

PC/AT.  В  октябре  1985 года был выпущен 80386DX с 32- разрядной

шиной адреса (максимальное адресное пространство - 4 Гбайт),  а в

июне 1988 года - 80386SX,  более дешевый по сравнению с 80386DX и

обладавший 24-разрядной адресной шиной.  Затем в апреле 1989 года

появляется микропроцессор 80486DX,  а в мае 1993 - первый вариант

процессора Pentium (оба с 32-разрядной шиной адреса).

     В мае 1995 года в Москве на международной выставке Комтек-95

фирма Intel представила новый процессор - P6.

     Одной из важнейших целей,  поставленных при  разработке  P6,

было  удвоение производительности по сравнению с процессором Pen-

tium. При этом производство первых версий P6 будет осуществляться

по уже отлаженной "Intel" и используемой при производстве послед-

них версий Pentium полупроводниковой технологии (О,6 мкм, З,З В).

Использование  того же самого процесса производства дает гарантию

того,  что массовое производство P6 будет налажено без  серьезных

проблем.  Вместе с тем это означает,  что удвоение производитель-

ности достигается только за счет всестороннего улучшения микроар-

хитектуры процессора.  При разработке микроархитектуры P6 исполь-

зовалась тщательно продуманная и настроенная комбинация различных

архитектурных методов.  Часть из них была ранее опробована в про-

цессорах "больших" компьютеров,  часть предложена  академическими

институтами, оставшиеся разработаны инженерами фирмы "Intel". Эта

уникальная комбинация архитектурных особенностей,  которую в "In-

tel" определяют словами "динамическое выполнение", позволила пер-

вым кристаллам P6 превзойти первоначально планировавшийся уровень

производительности.

     При сравнении с альтернативными "Intel" процессорами семейс-

тва х86 выясняется,  что микроархитектура Р6 имеет много общего с

микроархитектурой процессоров Nx586 фирмы NexGen и K5 фирмы  AMD,

и,  хотя  и в меньшей степени,  с M1 фирмы "Cyrix".  Эта общность

 

                              - 3 -

 

объясняется тем,  что инженеры четырех компаний решали одну и  ту

же  задачу:  внедрение  элементов  RISC-технологии при сохранении

совместимости с CISC-архитектурой Intel х86.

 

                   2Два кристалла в одном корпусе

                                          

     Главное преимущество и уникальная особенность Р6 - размещен-

ная  в  одном корпусе с процессором вторичная статическая кэш-па-

мять размером 256 кб,  соединенная с процессором специально выде-

ленной шиной. Такая конструкция должна существенно упростить про-

ектирование систем на базе Р6.  Р6 - первый  предназначенный  для

массового производства микропроцессор,  содержащий два чипа в од-

ном корпусе.

     Кристалл ЦПУ в Р6 содержит 5,5 миллионов транзисторов; крис-

талл кэш-памяти второго уровня - 15,5 миллионов.  Для  сравнения,

последняя  модель  Pentium включала около 3,3 миллиона транзисто-

ров,  а кэш-память второго уровня реализовывалась с помощью внеш-

него набора кристаллов памяти.

     Столь большое число транзисторов в кэше объясняется его ста-

тической природой. Статическая память в P6 использует шесть тран-

зисторов для запоминания одного бита, в то время как динамической

памяти было бы достаточно одного транзистора на бит.  Статическая

память быстрее, но дороже.

     Хотя число транзисторов на кристалле с вторичным кэшем втрое

больше,  чем на кристалле  процессора,  физические  размеры  кэша

меньше:  202  квадратных миллиметра против 306 у процессора.  Оба

кристалла вместе заключены в керамический корпус с 387 контактами

("dual cavity pin-drid array"). Оба кристалла производятся с при-

менением одной и той же  технологии  (0,6  мкм,  4-  слойная  ме-

талл-БиКМОП,  2,9  В).  Предполагаемое  максимальное  потребление

энергии: 20 Вт при частоте 133 МГц.

     Первая причина  объединения  процессора  и вторичного кэша в

одном корпусе - облегчение проектирования и производства высокоп-

роизводительных  систем  на базе Р6.  Производительность вычисли-

тельной системы,  построенной на быстром процессоре, очень сильно

зависит  от  точной  настройки микросхем окружения процессора,  в

частности вторичного  кэша.  Далеко  не  все  фирмы-производители

компьютеров могут позволить себе соответствующие исследования.  В

Р6 вторичный кэш уже настроен на процессор  оптимальным  образом,

что облегчает проектирование материнской платы.

     Вторая причина объединения -  повышение  производительности.

Кзш второго уровня связан с процессором специально выделенной ши-

ной шириной 64 бита и работает на той же тактовой частоте,  что и

процессор.

     Первые процессоры Рentium с тактовой частотой 60  и  66  МГц

обращались к вторичному кэшу по 64-разрядной шине с той же такто-

вой частотой. Однако с ростом тактовой частоты Pentium для проек-

тировщиков  стало слишком сложно и дорого поддерживать такую час-

тоту на материнской плате.  Поэтому  стали  применяться  делители

частоты.  Например,  у  100  МГц Pentium внешняя шина работает на

частоте 66 МГц (у 90 МГц Pentium - соответственно 60 МГц). Penti-

um использует эту шину как для обращений к вторичному кэшу, так и

 

                              - 4 -

 

для обращения к основной памяти и другим устройствам,  например к

набору чипов PCI.

     Использование специально выделенной шины для доступа к  вто-

ричному  кэшу улучшает производительность вычислительной системы.

Во-первых,  при этом достигается полная  синхронизация  скоростей

процессора и шины;  во-вторых,  исключается конкуренция с другими

операциями ввода-вывода и связанные с этим  задержки.  Шина  кэша

второго уровня полностью отделена от внешней шины,  через которую

происходит доступ к  памяти  и  внешним  устройствам.  64-битовая

внешняя шина может работать со скоростью,  равной половине, одной

третьей или одной четвертой от скорости процессора, при этом шина

вторичного кэша работает независимо на полной скорости.

     Объединение процессора и вторичного кэша в одном  корпусе  и

их  связь  через  выделенную шину является шагом по направлению к

методам повышения  производительности,  используемым  в  наиболее

мощных RISC-процессорах. Так, в процессоре Alpha 21164 фирмы "Di-

gital" кэш второго уровня размером 96 кб размещен в ядре  процес-

сора,  как и первичный кэш. Это обеспечивает очень высокую произ-

водительность кэша за счет увеличения числа транзисторов на крис-

талле до 9,3 миллиона.  Производительность Alpha 21164 составляет

330 SPECint92 при тактовой частоте 300 МГц. Производительность Р6

ниже (по оценкам "Intel" - 200 SPECint92 при тактовой частоте 133

МГц),  однако Р6 обеспечивает лучшее соотношение стоимость/произ-

водительность для своего потенциального рынка.

     При оценке соотношения стоимость/производительность  следует

учитывать, что, хотя Р6 может оказаться дороже своих конкурентов,

большая часть других процессоров должна  быть  окружена  дополни-

тельным набором чипов памяти и контроллером кэша. Кроме того, для

достижения сравнимой производительности работы  с  кэшом,  другие

процессоры  должны  будут  использовать кэш большего,  чем 256 кб

размера.

     "Intel", как  правило,  предлагает  многочисленные  вариации

своих процессоров. Это делается с целью удовлетворить разнообраз-

ным  требованиям  проектировщиков систем и оставить меньше прост-

ранства для моделей конкурентов.  Поэтому можно предположить, что

вскоре  после начала выпуска Р6 появятся как модификации с увели-

ченным объемом вторичной кэш-памяти,  так и более дешевые модифи-

кации с внешним расположением вторичного кэша, но при сохраненной

выделенной шине между вторичным кэшом и процессором.

 

                     2Pentium как точка отсчета

 

     Процессор Pentium со своей конвейерной и суперскалярной  ар-

хитектурой достиг впечатляющего уровня производительности.

     Pentium содержит два 5-стадийных  конвейера,  которые  могут

работать параллельно и выполнять две целочисленные команды за ма-

шинный такт.  При этом параллельно может выполняться только  пара