_WELCOMETO Radioland

Главная Схемы Документация Студентам Программы Поиск Top50  
Поиск по сайту



Навигация
Главная
Схемы
Автоэлектроника
Акустика
Аудио
Измерения
Компьютеры
Питание
Прог. устройства
Радио
Радиошпионаж
Телевидение
Телефония
Цифр. электроника
Другие
Добавить
Документация
Микросхемы
Транзисторы
Прочее
Файлы
Утилиты
Радиолюб. расчеты
Программирование
Другое
Студентам
Рефераты
Курсовые
Дипломы
Информация
Поиск по сайту
Самое популярное
Карта сайта
Обратная связь

Студентам


Студентам > Рефераты > История развития проводной многоканальной электросвязи

История развития проводной многоканальной электросвязи

Страница: 4/9

- эффект накапливания в канале помех, шумов и искажений с увеличением расстояния, существенно снижающий качество связи;

- дороговизна аппаратуры, связанная с высочайшими требованиями к стабильности частот задающих генераторов, линейности амплитудных характеристик усилителей, амплитудно-частотным характеристикам электрических фильтров и т. д.;

- трудоемкость эксплуатации, наличие только самых примитивных средств встроенного контроля;

- большие габариты, масса, высокое энергопотребление;

- трудность передачи данных по аналоговым каналам.

Устранить эти недостатки в рамках аналоговой технологии оказалось невозможно, в результате чего аналоговые системы передачи себя изжили, уступив место цифровым системам передачи. Тем не менее, во всем мире все еще эксплуатируется большое количество аналоговых систем, а методы частотного разделения каналов в настоящее время применяются в новейших волоконно-оптических системах передачи с разделением по длинам волн (WDM), а также в высокоэффективных системах «последней мили» xDSL.

3 Цифровые системы передачи плезиохронной цифровой иерархии

В начале XX в. великий русский ученый В. А. Котельников доказал свою знаменитую теорему о дискретизации, показав принципиальную возможность представления непрерывного сигнала в виде последовательности отсчетов, взятых через определенный промежуток времени, и полного восстановления по этой последовательности исходного сигнала. В 1937 году французский инженер А. Ривс предложил принципы импульсно-кодовой модуляции (ИКМ). Импульсные методы модуляции интенсивно развивались в связи с развитием радиолокации начиная с 40-х годов. Таким образом, предпосылки к созданию цифровых систем передачи были созданы еще в первой половине XX века.

Тем не менее, вплоть до 60-х (в России – до 70-х) годов все системы передачи были аналоговыми. Опытная 96-канальная система с ИКМ была создана в первые годы после Второй мировой войны. Но цифровое оборудование было исключительно громоздким, поэтому цифровая связь не находила широкого применения вплоть до конца 50-х годов. Настоящее развитие импульсно-кодовые методы передачи получили лишь начиная с 1956 г., после изобретения транзистора (1948 г.) и разработки первого поколения электронных цифровых вычислительных машин.

Первая коммерческая цифровая система передачи голоса, использовавшая импульсно-кодовую модуляцию и временное разделение каналов, была создана компанией Bell Systems (США) в Чикаго в 1962 г. Система позволяла организовать 24 телефонных канала и работала по медному кабелю, соединявшему офисы компании. Для организации одного телефонного канала требовался цифровой поток со скоростью 64 кбит/с. С учетом того, что 8 кбит/с требовалось для служебных целей, суммарная скорость цифрового потока составляла 1544 кбит/с. [9, 10]

Этот цифровой поток впоследствии был назван каналом DS1, или T1. В США канал со скоростью 1544 кбит/с был принят в качестве первого уровня иерархии цифровых потоков. Это было уже время появления ЭВМ третьего поколения, принесших с собой концепцию каналов ввода-вывода с развитой системой мультиплексоров ввода-вывода, используемых для организации коммерческих сетей передачи данных. Также получали распространение локальные вычислительные сети для объединения компьютеров.

Однако только стремительное развитие микропроцессорной техники (в частности, появление первого микропроцессора фирмы Intel) сделало возможным реальное внедрение цифровых технологий в системы связи. Результатом стало широкое распространение и развитие компьютерных сетей, что дало толчок к созданию сетей передачи голоса и данных с ИКМ.

Развитие цифровых телефонных сетей шло в направлении все большего уплотнения каналов. Это достигалось, с одной стороны, за счет мультиплексирования каналов T1 в сигналы с более высокими скоростями. С другой стороны, применение более эффективных, чем традиционная ИКМ, методов кодирования речевых сигналов (например, дельта-модуляции, дифференциальной импульсно-кодовой модуляции, как неадаптивной, так и адаптивной) позволило уменьшить скорость цифрового потока, требуемую для организации одного телефонного канала и тем самым разместить в одном канале со скоростью 64 кбит/с не один, а несколько телефонных каналов [10].

Развитие схем мультиплексирования привело к созданию трех иерархий цифровых систем передачи – европейской, североамериканской и японской. Европейская иерархия основывается на первичном цифровом потоке E1, имеющем скорость 2048 кбит/с. При объединении четырех потоков E1 формируется поток E2, имеющий скорость 8448 кбит/с. Поток E3 (34368 кбит/с) получается мультиплексированием четырех потоков E2. Аналогично, потоком четвертого уровня (E4) является сигнал со скоростью 139264 кбит/с, а скорость потока E5 составляет 564992 кбит/с.

В Северной Америке, как уже отмечалось, в качестве первичного сигнала используется поток со скоростью 1544 кбит/с. Сигналы более высоких уровней североамериканской иерархии имеют скорости 6312, 44736 и 274176 кбит/с. Японский вариант иерархии на первых двух уровнях совпадает с американским стандартом (скорости стандартных потоков составляют 1544, 6312, 32064, 97728 кбит/с) [3].

Объединение цифровых потоков производилось, в основном, побитовым способом. Требования к нестабильности генераторного оборудования были существенно ослаблены по сравнению с аналоговыми системами передачи, что порождало необходимость предусматривать специальные механизмы для согласования скоростей компонентных (объединяемых) и агрегатного (группового) сигналов. Традиционно согласование скоростей подразделялось на положительное, отрицательное и двустороннее и достигалось либо за счет вставки балластных символов (эта процедура называлась стаффингом), либо, наоборот, путем изъятия одного символа из цифрового потока и передачи его по отдельному специально отведенному цифровому каналу. Для управления процессом в цикле группового сигнала также предусматривались биты для команд согласования скоростей [10].

Так как цифровые системы передачи были рассчитаны на синхронизацию от различных задающих генераторов и допускали некоторое расхождение частот, эта технология получила название ПЦИ – плезиохронная, т. е. почти синхронная, цифровая иерархия (PDH, Plesiochronous Digital Hierarchy).

В СССР был принят европейский вариант иерархии. Для сельских сетей связи были разработаны системы передачи ИКМ-15 и ЗОНА-15. На городских сетях применялась система ИКМ-30. Для зоновых и местных сетей была создана аппаратура ИКМ-120. Системы более высокого уровня – ИКМ-480 и ИКМ-1920 нашли свое применение на магистральных и зоновых сетях [3].

Изначально цифровые системы передачи были разработаны для линий связи, в которых средой распространения групповых сигналов являлись либо металлический кабель, либо радиорелейные линии. В этих системах длина регенерационного участка для E1 – E2 не превышала 5 км, а для E4 – 1,5…2 км. Внедрение систем передачи, работающих по оптическому волокну, позволило многократно увеличить длину регенерационного участка.