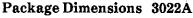
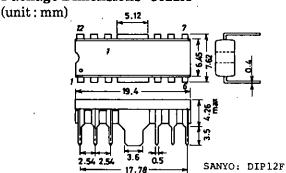


No.1571B

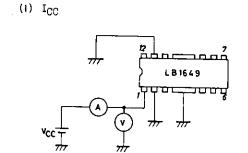
LB1649

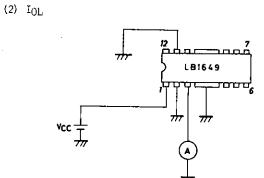

# Dual Bidirectional Motor Driver


The LB1649 is a dual bidirectional motor driver. Since each channel has a 2-input logic circuit and performs bidirectional driving and braking functions, it is capable of direct driving 2pcs. of motor of various types rated at 6 to 24V. The output voltage can be varied by using external zener diodes. It is especially suited for dual motor drive (reel motor, loading motor, cassette motor in VTR) and for stepping motor drive.

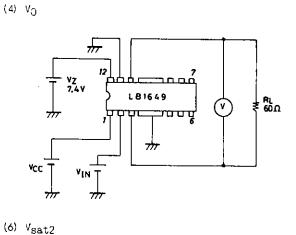
#### **Features**

- . With power transistors for motor drive contained, capable of withstanding dash current of 1A max.
- . Performs braking function at the motor stop mode.
- . Contains elements to absorb motor dash current.
- . Input connectable direct to MOS LSI.
- . Minimum number of external parts required.
- . Wide operating voltage range.


| Absolute Maximum Ratings at       | unit              |                                               |               |        |     |          |  |
|-----------------------------------|-------------------|-----------------------------------------------|---------------|--------|-----|----------|--|
| Maximum Supply Voltage            | V <sub>CC</sub> m |                                               |               | 25     | 7   | I        |  |
| Input Voltage                     | VIN               |                                               |               | 25     |     | Į        |  |
| Output Current                    | ī                 |                                               |               | ±1     | 1   | Į        |  |
| Allowable Power Dissipati         | on Pdma:          | x                                             |               | 1.9    |     |          |  |
| Operating Temperature             | Topr              |                                               | -25 to +75 °C |        |     |          |  |
| Storage Temperature               | Tstg              |                                               | -55 t         | 0 +125 | 0(  | 3        |  |
| Allowable Operating Conditi       | unit              |                                               |               |        |     |          |  |
| Supply Voltage                    | V <sub>CC</sub>   |                                               | •             | to 25  | 1   | <i>y</i> |  |
| <b>Rlectrical Characteristics</b> | at Ta=2           | 5°C, V <sub>CC</sub> =12V, per channel        | min           | typ    | max | unit     |  |
| Current Dissipation               | ICC               | Braking mode, $R_L = \infty$ per channel      |               | 7.0 1  | 0.0 | mA       |  |
| Output Leakage Current            |                   | Braking mode,R <sub>L</sub> =∞<br>per channel |               | 40     | 120 | Au       |  |
| Input Threshold Voltage           |                   | $R_L = \infty$                                | 0.9           | 1.05 1 | .20 | V        |  |
| Output Voltage                    | Λ <sup>O</sup>    | $R_L^L = 60 \text{ohms}, V_Z = 7.4 \text{V}$  | 6.5           | 7.2    | 7.5 | v        |  |
|                                   | U                 |                                               | Continu       |        |     | page.    |  |

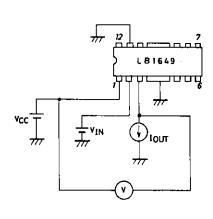


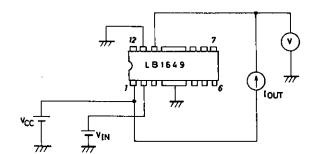




#### Continued from preceding page. min typ max unit V<sub>sat1</sub> I<sub>OUT</sub>=300mA I<sub>OUT</sub>=500mA V<sub>sat2</sub> I<sub>OUT</sub>=300mA I<sub>OUT</sub>=500mA Output Tr Saturation 1.9 2.3 V Voltage (Upper) 2.0 2.4 V Output Tr Saturation 0.3 0.55 V Voltage (Lower) ٧ 0.5 0.7

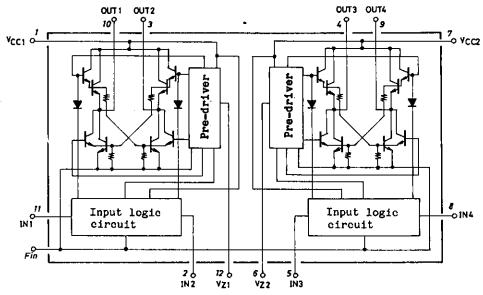
## Test Circuits (per channel)







VCC 7 VIN






(3)  $v_{th}$ 

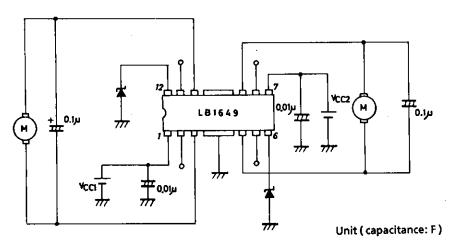




### Equivalent Circuit Block Diagram



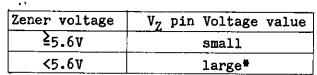
Truth Table of Logic Circuit


| IN1 | IN2 | OUT1 | OUT2 | IN3 | IN4 | OUT3 | OUT4 |
|-----|-----|------|------|-----|-----|------|------|
| 0   | 0   | L    | L    | 0   | 0   | L    | L    |
| 1   | 0   | H    | L    | 1.  | 0   | H    | L    |
| .0  | 1   | L    | H    | 0   | 1   | L    | H    |
| 1   | 1   | L    | L    | 1   | 1   | L    | L    |

Note) A capacitor of 0.01 $\mu F$  or greater must be connected across  $V_{\rm CC}1$ ,2 and GND.

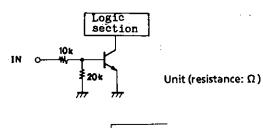
|     | INPUT |     | OUT PUT |      |      |      | MODE            |                 |  |
|-----|-------|-----|---------|------|------|------|-----------------|-----------------|--|
| IN1 | IN2,3 | IN4 | OUT1    | OUT2 | OUT3 | OUT4 | M1              | M2              |  |
| 0   | 0     | 0   | L       | L    | L    | L    | Brake           | Brake           |  |
| 1   | 0     | 0   | H       | Ĺ    | L    | L    | Forward/Reverse | Brake           |  |
| 0   | 1     | 1   | L       | H    | L    | L    | Reverse/Forward | Brake           |  |
| 1   | 1     | 0   | L       | L    | H    | L    | Brake           | Forward/Reverse |  |
| 0   | 0     | 1   | L       | L    | L    | H    | Brake           | Reverse/Forward |  |
| 1   | 1     | 1   | L       | L    | L    | L    | Brake           | Brake           |  |

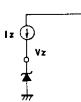
The remaining input states 1,0,1 and 0,1,0 are not inhibited.

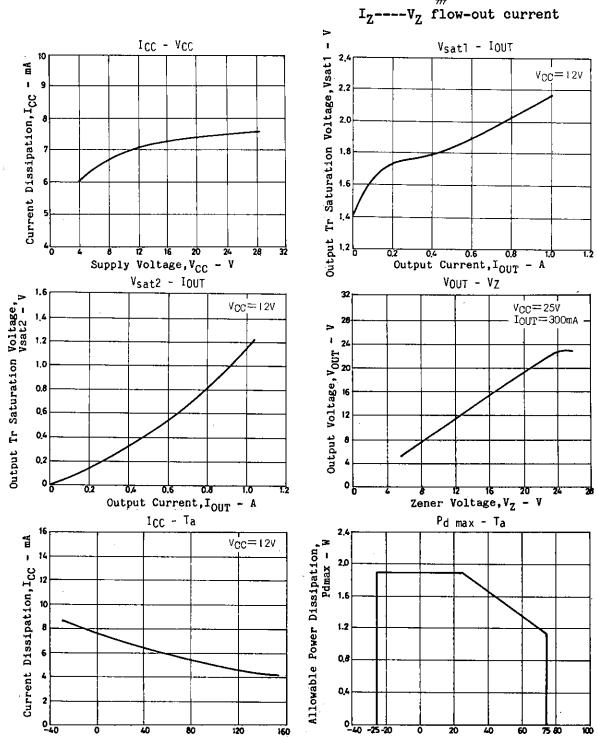

Sample Application Circuit



#### Input Circuit


The input circuit is shown right.


 $V_Z$  pin




\*Susceptible to  $V_{Z}$  pin flow-out current change.

Ambient Temperature, Ta - °C







Ambient Temperature, Ta - °C

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
  - Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
  - Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.