INTEGRATED CIRCUITS

Preliminary specification Supersedes data of September 1991 File under Integrated Circuits, IC01 1995 May 08

Philips Semiconductors

TDA1561Q

FEATURES

- Low power dissipation due to switching from SE to BTL mode
- High common-mode rejection ratio (CMRR)
- Mute/standby/BTL-disable switch (mode select pin)
- Zero-crossing mute
- Load dump protection
- Short-circuit safe to ground, V_{P} and across load
- Loudspeaker protection
- Switches to single-ended operation at excessive crystal temperature.

GENERAL DESCRIPTION

The TDA1561Q is a monolithic power amplifier in a 13-lead plastic DIL-bent-SIL power package (DBS13P). It contains two identical 23 W amplifiers. The power dissipation is minimized by switching from single-ended (SE) to bridge-tied load (BTL) mode, when a higher output voltage swing is required. The device is primarily developed for car radio applications.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage	DC biased	6.0	14.4	18	V
		non-operating	-	-	30	V
		load dump protected	-	-	50	V
I _{ORM}	repetitive peak output current		-	-	4	A
I _{q(tot)}	total quiescent current		-	95	150	mA
I _{stb}	standby current		-	1	50	μA
z _I	input impedance		-	60	_	kΩ
Po	output power	$R_L = 4 \Omega$; THD = 10%	21	23	_	W
G _v	closed loop voltage gain		31	32	33	dB
CMRR	common mode rejection ratio	$f_i = 1 \text{ kHz}; R_S = 0 \Omega$	-	80	_	dB
SVRR	supply voltage ripple rejection	$f_i = 1 \text{ kHz}; R_S = 0 \Omega$	45	55	_	dB
ΔV _O	DC output offset voltage		-	-	150	mV
α_{cs}	channel separation	$R_{S} = 0 k\Omega$	40	-	_	dB
$ \Delta G_v $	channel unbalance		-	-	1	dB

QUICK REFERENCE DATA

ORDERING INFORMATION

		PACKAGE			
NAME DESCRIPTION		DESCRIPTION	VERSION		
TDA1561Q	DBS13P	plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)	SOT141-6		

BLOCK DIAGRAM

PINNING

SYMBOL	PIN	DESCRIPTION
IN1	1	input 1
HV _P	2	half supply voltage control input
MODE	3	mute/standby/BTL-disable mode select switch input
GND1	4	ground 1
OUT1	5	inverting output 1
OUT1	6	non-inverting output 1
V _P	7	supply voltage
OUT2	8	inverting output 2
OUT2	9	non-inverting output 2
GND2	10	ground 2
C ₁₁	11	single-ended electrolytic output
CIN	12	common input
IN2	13	input 2

FUNCTIONAL DESCRIPTION

The TDA1561Q contains two identical amplifiers with differential inputs. At low output power, up to output amplitudes of 3 V (RMS) at $V_P = 14.4$ V, the device operates as a normal single-ended (SE) amplifier. When a larger output voltage swing is required, the circuit switches internally to bridge-tied load (BTL) operation.

With a sine wave input signal the power dissipation of the TDA1561Q is approximately 50% lower than a conventional BTL amplifier at 2 W output power (see Fig.3).

In normal use, when the amplifier is driven with music signals, the high (BTL) output power is only required for a small percentage of time. Assuming a music signal ($P_o = 1.6$ W) has a normal (Gaussian) amplitude distribution, the reduction in dissipation is approximately 40% when compared to a BTL amplifier with the same output power (see Fig.4). The heatsink should be designed for use with music signals. With such a heatsink, the thermal protection disables the BTL mode when the crystal temperature exceeds 145 °C. In this event the output power is limited to 5 W per amplifier when driven with a worst case sine wave input signal.

The gain of each amplifier is internally fixed at 32 dB. With the mode select input the device can be switched to the following modes:

- Low standby current (<50 μA)
- Mute condition, DC adjusted
- On operation

4

• SE only operation (BTL disabled).

The device is fully protected against short-circuiting of the outputs to ground and to V_P . It is also protected against short-circuiting the loudspeaker and high crystal temperatures. In the event of a permanent short-circuit to ground or V_P , the output stage will be switched off causing a low dissipation. With permanent short-circuiting of the loudspeaker, the output stage will repeatedly be switched on and off. The duty cycle in the on condition is low enough to prevent excessive dissipation (duty cycle is approximately 0.1%).

24

20

16

12

8

4

0

(2) For TDA1561Q.

0

2

(1) For conventional amplifier BTL.

(3) For conventional amplifier SE.

4

Pdiss

(W)

TDA1561Q

To avoid plops during switching from mute to on or from on to mute/standby, a built-in zero-cross detector only allows switching at zero input voltage. However, when VP drops below 6 V (e.g. engine start), the circuit mutes immediately to avoid clicks coming from electronic circuitry preceding

 2×23 W car radio power amplifier

The voltage of the SE electrolytic capacitor is always kept to $0.5V_P$ by a voltage buffer (see Fig.1). The value of the SE electrolytic capacitor has an important influence on the output power in SE mode, especially at low signal frequencies, a high value is then recommended to minimize dissipation.

the power amplifier.

1995 May 08

TDA1561Q

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _P	supply voltage	operating	_	18	V
		non-operating	_	30	V
		load dump protection; $t_r \ge 2.5 \text{ ms}$	_	50	V
V _{P(sc)}	AC and DC short-circuit safe voltage		-	18	V
V _{P(r)}	reverse polarity		_	6	V
I _{OSM}	non-repetitive peak output current		-	6	A
I _{ORM}	repetitive peak output current		-	4	A
P _{tot}	total power dissipation		_	60	W
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		-40	+150	°C
T _c	crystal temperature		_	150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	40	K/W
R _{th j-c}	thermal resistance from junction to case	1.3	K/W

Heatsink design

There are two parameters that determine the size of the heatsink. The first is the rating for the virtual junction temperature and the second is the ambient temperature at

which the amplifier must still deliver its full power in the BTL mode.

VIRTUAL JUNCTION TEMPERATURE

With a **conventional BTL amplifier**, the maximum power dissipation with a 4 Ω load and driven with a music signal (at each amplifier) will be approximately 2 × 6 W. At a virtual junction temperature of 150 °C and T_{amb(max}) at 60 °C, R_{th vj-c} = 1.3 K/W and R_{th c-hs} = 0.2 K/W (the value of R_{th c-hs} depends on the application), the thermal resistance of the heatsink should be:

$$\frac{150-60}{2\times 6} - 1.3 - 0.2 = 6 \text{ K/W}$$

MAXIMUM FULL-POWER TEMPERATURE

However the **TDA1561Q** has a higher efficiency. The thermal resistance of the heatsink should be:

$$\frac{145-60}{2\times6}\times\frac{1}{0.6}-1.3-0.2 = 10.3 \text{ K/W}$$

145 °C is the temperature at which BTL will be disabled.

 $\frac{1}{0.6}$: coefficient because of 40% higher efficiency.

TDA1561Q

DC CHARACTERISTICS

 V_P = 14.4 V; T_{amb} = 25 °C; measured in Fig.14; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply		-	-			
V _P	supply voltage	note 1	6.0	14.4	18.0	V
I _{q(tot)}	total quiescent current	$R_L = \infty$	_	95	150	mA
I _{stb}	standby current		_	1	50	μA
V _{O(avg)}	average elco output voltage		_	7.1	-	V
$ \Delta V_0 $	DC output offset voltage	on state	-	-	150	mV
		mute state	_	-	150	mV
Mode selec	t switch (see Fig.6)		-			
V ₃ switch input	switch input voltage level	standby condition	0	-	1	V
		mute condition	2	-	3	V
		on condition	4	-	5.5	V
		on condition; BTL disabled	7.5	-	V _P	V
I _{SW}	switch input current	V _{SW} = 7.5 V	_	-	40	μA
Protection						
T _{dis}	BTL disable temperature		-	145	-	°C

Note

1. The circuit is DC adjusted at V_P = 6 to 18 V and AC operating at V_P = 8 to 18 V.

TDA1561Q

AC CHARACTERISTICS

 V_P = 14.4 V; R_L = 4 Ω ; C_{SE} = 1000 μ F; f = 1 kHz; T_{amb} = 25 °C; measured in Fig.14; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Po	output power	THD = 0.5%	15	18	-	W
		THD = 10%	21	23	-	W
		V _P = 13.2 V; THD = 0.5%	-	14	-	W
		V _P = 13.2 V; THD = 10%	_	20	_	W
THD	total harmonic distortion	P _o = 1 W; f = 1 kHz; note 1	-	0.1	-	%
В	power bandwidth	THD = 1%; $P_o = -1 dB$ with respect to 15 W	-	20 to 15000	-	Hz
f _{lr}	low frequency roll-off	-1 dB; note 2	_	25	-	Hz
f _{hr}	high frequency roll-off	–1 dB	75	-	-	kHz
G _v	closed loop voltage gain		31	32	33	dB
SVRR	supply voltage ripple rejection	$R_{S} = 0 \Omega; V_{ripple} = 2 V (p-p)$				
		on; f = 1 kHz	45	55	-	dB
		mute; f = 1 kHz	-	55	-	dB
		standby; f = 100 Hz to 10 kHz	80	-	-	dB
CMRR	common mode rejection ratio	$R_{S} = 0 \Omega; f_{i} = 1 \text{ kHz}$	_	80	-	dB
Z _i	input impedance		-	90	-	kΩ
$ \Delta Z_i $	mismatch in input impedance		-	1	-	%
V _{3(rms)}	SE to BTL switch voltage level (RMS value)	note 3	-	3	-	V
V _{no}	noise output voltage	on; $R_S = 0 \Omega$; note 4	-	180	350	μV
		on; $R_S = 10 \text{ k}\Omega$; note 4	-	200	-	μV
		mute; note 5	-	180	-	μV
α_{cs}	channel separation	R _S = 0 Ω	40	60	-	dB
$ \Delta G_v $	channel unbalance		_	0.2	1	dB

Notes

1. The distortion is measured with a bandwidth of 10 Hz to 30 kHz.

- 2. Frequency response externally fixed (input capacitors determine low frequency roll-off).
- 3. The SE to BTL switch voltage level is dependent on V_P .
- 4. Noise voltage measured in a bandwidth of 20 Hz to 20 kHz.
- 5. Noise output voltage independent of R_S (V_I = 0 V).

TDA1561Q

INTERNAL PIN CONFIGURATIONS

TDA1561Q

TEST AND APPLICATION INFORMATION

TDA1561Q

PACKAGE OUTLINE

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE	REFERENCES EUROPEAN			ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT141-6					-92-11-17- 95-03-11

TDA1561Q

SOLDERING

Plastic DIL-bent-SIL packages

BY DIP OR WAVE

The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 s. The total contact time of successive solder waves must not exceed 5 s.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300 \,^{\circ}$ C, it must not be in contact for more than 10 s; if between 300 and 400 $^{\circ}$ C, for not more than 5 s.

DEFINITIONS

fication This data sheet contains target or goal specifications for product development.			
This data sheet contains preliminary data; supplementary data may be published later.			
This data sheet contains final product specifications.			
accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or nay cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification imiting values for extended periods may affect device reliability.			

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

TDA1561Q

NOTES

TDA1561Q

NOTES

TDA1561Q

NOTES

Philips Semiconductors – a worldwide company

Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367 Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02)805 4455, Fax. (02)805 4466 Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213. Tel. (01)60 101-1236, Fax. (01)60 101-1211 Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783 749, Fax. (31)40 788 399 Brazil: Rua do Rocio 220 - 5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970), Tel. (011)821-2333, Fax. (011)829-1849 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS: Tel. (800) 234-7381, Fax. (708) 296-8556 Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730 Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17, 77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549 Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (9)0-50261, Fax. (9)0-520971 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427 Germany: P.O. Box 10 63 23, 20043 HAMBURG, Tel. (040)3296-0, Fax. (040)3296 213. Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240 Hong Kong: PHILIPS HONG KONG Ltd., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)480 6960/480 6009 India: Philips INDIA Ltd, Shivsagar Estate, A Block , Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722 Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)7640 000, Fax. (01)7640 200 Italy: PHILIPS SEMICONDUCTORS S.r.I. Piazza IV Novembre 3, 20124 MILANO Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557 Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108, Tel. (03)3740 5028, Fax. (03)3740 0580 Korea: (Republic of) Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556 Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB Tel. (040)783749, Fax. (040)788399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811

Norway: Box 1, Manglerud 0612, OSLO, Tel. (022)74 8000, Fax. (022)74 8341 Pakistan: Philips Electrical Industries of Pakistan Ltd., Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546 Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc, 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474 Portugal: PHILIPS PORTUGUESA, S.A. Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)4163160/4163333, Fax. (01)4163174/4163366 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500 South Africa: S.A. PHILIPS Pty Ltd. 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430, Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494. Spain: Balmes 22, 08007 BARCELONA Tel. (03)301 6312, Fax. (03)301 42 43 Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 77 30 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (662)398-0141, Fax. (662)398-3319 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0212)279 27 70, Fax. (0212)282 67 07 United Kingdom: Philips Semiconductors LTD. 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. (0181)730-5000, Fax. (0181)754-8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556 Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601

Internet: http://www.semiconductors.philips.com/ps/

For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825

SCD39 © Philips Electronics N.V. 1995

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

513061/1500/02/pp20 Document order number: Date of release: 1995 May 08 9397 750 00121

Philips Semiconductors

PHILIPS