TDA1015

The TDA1015 is a monolithic integrated audio amplifier circuit in a 9-lead single in-line (SIL) plastic package. The device is especially designed for portable radio and recorder applications and delivers up to 4 W in a 4 Ω load impedance. The very low applicable supply voltage of 3,6 V permits 6 V applications. Special features are:

- single in-line (SIL) construction for easy mounting.
- separated preamplifier and power amplifier.
- high output power
- thermal protection
- high input impedance
- low current drain
- limited noise behaviour at radio frequencies

QUICK REFERENCE DATA

Supply voltage range	V₽	3,6 to 18		٧
Peak output current	low.	max.	2,5	A
Output power at d _{tot} = 10% Vp = 12 V; R _L = 4 Ω Vp = 9 V; R _L = 4 Ω Vp = 6 V; R _L = 4 Ω	P _o Po Po	typ. typ. typ.	4,2 2,3 1,0	W
Total harmonic distortion at P _o = 1 W; R _L = 4 Ω	d _{tot}	typ.	0,3	%
Input impedance preamplitier (pin 8) power amplitier (pin 6)	z z	> typ.		kΩ kΩ
Total quiescent current	l _{tot}	typ.	14	mΑ
Operating ambient temperature	Tamb	−25 to	+ 150	$\mathbf{o}_{\mathbb{C}}$
Storage temperature	T_{stg}	–55 to	+ 150	$\circ_{\mathbb{C}}$

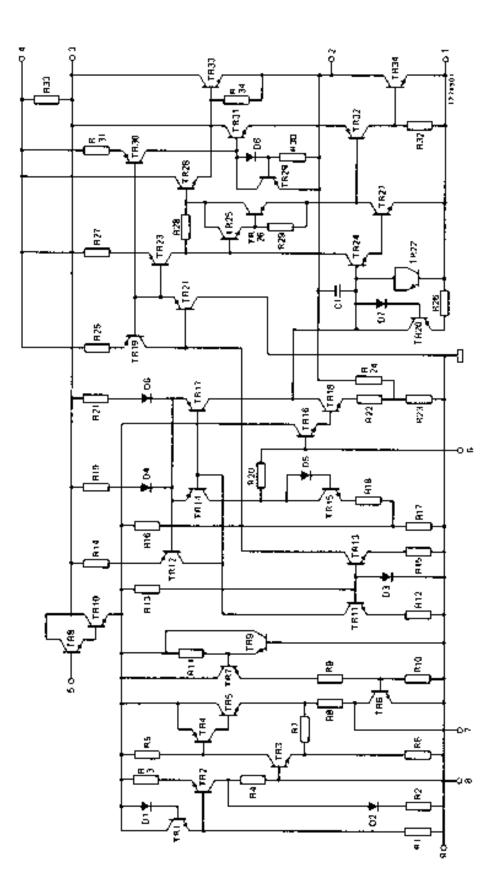


Fig. 1 Circuit diagram.

TDA1015

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Supply voltage ٧p max, 18 V Peak output current máx. 2,5 A MON see derating curve Fig. 2 Total power dissipation -55 to + 150 °C Storage temperature Tsto -25 to + 150 °C

A.C. short-circuit duration of load during sine-wave drive; Vp = 12 V

Operating ambient temperature

100 hours t_{SC} max.

T_{amb}

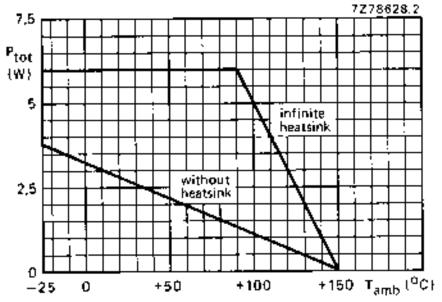


Fig. 2 Power derating curve.

HEATSINK DESIGN

Assume $V_P = 12 \text{ V; R}_L = 4 \Omega; T_{amb} = 45 \,^{\circ}\text{C}$ maximum.

The maximum sine-wave dissipation is 1,8 W.

$$R_{th j-a} = R_{th j-tab} + R_{th tab-h} + R_{th h-a} = \frac{150-45}{1.8} = 58 \text{ K/W}.$$

Where $R_{th\;j+a}$ of the package is 45 K/W, so no external heatsink is required.

TDA1015

D.C. CHARACTERISTICS				
Supply voltage range	٧e	3,6 to 18 V		
Repatitive peak output current	ORM	<	2	А
Total quiescent current at V _P = 12 V	1 _{tot}	tγρ. <		mA mA
A.C. CHARACTERISTICS				
$T_{amb} = 25$ °C; $V_P = 12$ V; $R_L = 4$ Ω ; $f = 1$ kHz unless otherwise specific	fied; see also	Fig. 3.		
A.F. output power at d _{tot} = 10% (note 1) with bootstrap:				
$V_{P} = 12 \text{ V}; \Theta_{L} = 4 \Omega$	Po	typ.	4,2	₩
Vp = 9 V; R _L = 4 Ω	P _Q	typ.	2,3	W
$V_P = 6 V; R_L = 4 \Omega$	Po	typ.	1,0	W
without bootstrap: $V_P = 12 \text{ V; } R_L = 4 \Omega$	Po	typ.	3,0	w
Voltage gain:				
preamplifier (note 2)	Gv1	typ.	23	₫₿
power amplifier	G_{v2}	typ.	29	dВ
total amplifier	G _{v tot}	typ. 49 t	52 o 55	₫₿ ₫₿
Total harmonic distortion at P _o = 1,5 W	d _{tot}	typ.	0,3 1,0	
Frequency response; -3 dB (note 3)	B	60 Hz to	o 15	kHz
Input impedance:		>	100	LO.
preamplifier (note 4)	Z _{i1}	typ.	200	
power amplifier	$ Z_{i2} $	typ.		kΩ
Output impedance preamplifier	Z _{p1}	typ.	1	kΩ
Output voltage preamplifier (r.m.s. value)	1 4-1			
$d_{tot} \le 1\%$ (note 2)	Vo(rms)	typ.	8,0	V
Noise output voltage (r.m.s. value; note 5)				
R _S = 0 Ω	Vn(rms)	typ.	0,2	m٧
$R_S = 10 \text{ k}\Omega$	$V_{n(rms)}$	typ.	0,5	mV
Noise output voltage at $f = 500 \text{ kHz}$ (r.m.s. value) $B = 5 \text{ kHz}$; $B_S = 0 \Omega$	V _{n(rms)}	typ.	8	μ۷
Ripple rejection (note 6) f = 100 Hz	RR	typ.	38	dB

TDA1015

Notes

- 1. Measured with an ideal coupling capacitor to the speaker load.
- Measured with a load resistor of 20 kΩ.
- Measured at P_o = 1 W; the frequency response is mainly determined by C1 and C3 for the low frequencies and by C4 for the high frequencies.
- Independent of load impedance of preamplifier.
- 5. Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
- 6. Ripple rejection measured with a source impedance between 0 and 2 k Ω (maximum ripple amplitude : 2 V).
- 7. The tab must be electrically floating or connected to the substrate (pin 9).

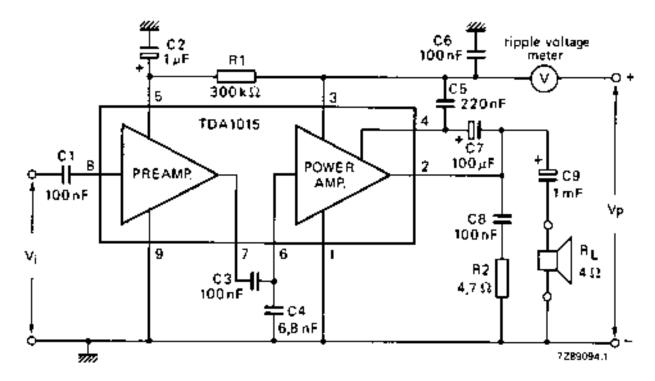


Fig. 3 Test circuit.

APPLICATION INFORMATION

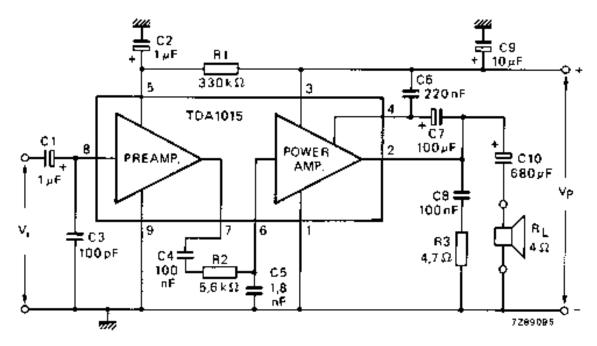


Fig. 4. Circuit diagram of a 1 to 4 W amplifier.

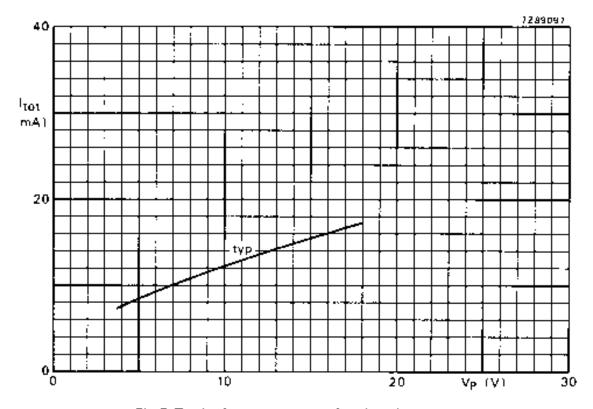


Fig. 5. Total quiescent current as a function of supply voltage.

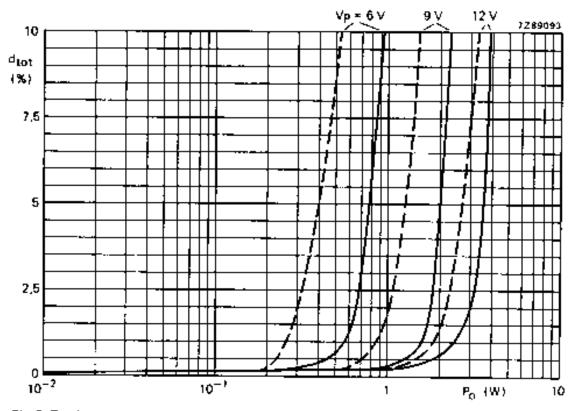


Fig. 6. Total harmonic distortion as a function of output power across R_{\perp} : —— with bootstrap; — — without bootstrap; f = 1 kHz; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

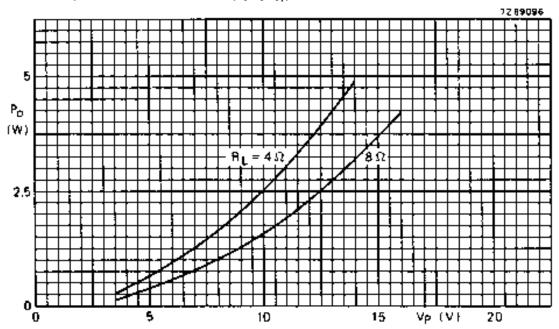


Fig. 7. Output power across R_L as a function of supply voltage with bootstrap; $d_{tot} = 10\%$; typical values. The available output power is 5% higher when measured at pin 2 (due to series resistance of C10).

TDA1015

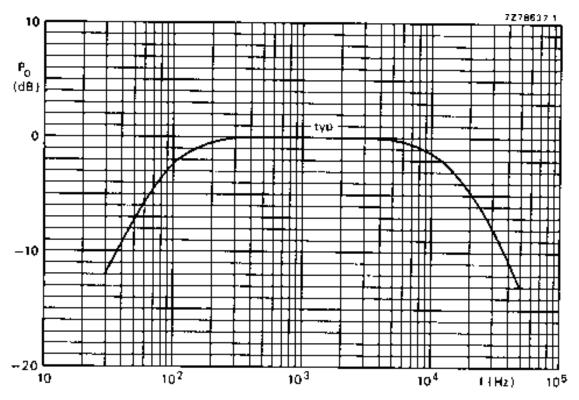


Fig. 8. Voltage gain as a function of frequency; P_{Q} relative to 0 dB = 1 W; V_{P} = 12 V; R_{L} = 4 Ω_{\odot}

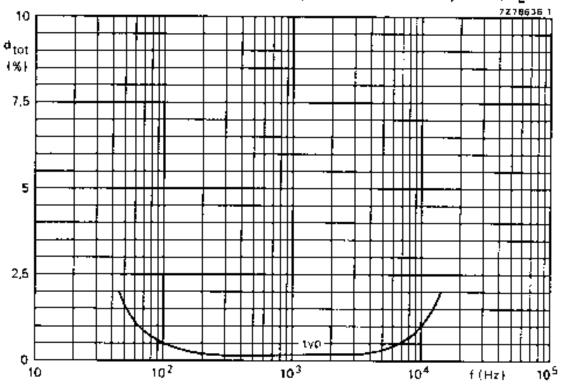


Fig. 9. Total harmonic distortion as a function of frequency; P_0 = 1 W; V_P = 12 V; R_L = 4 Ω_{\odot}

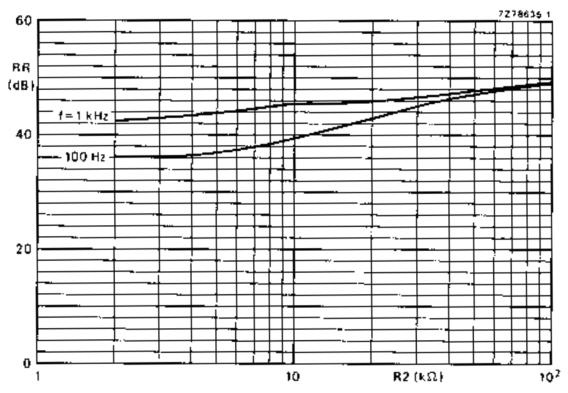


Fig. 10. Ripple rejection as a function of R2 (see Fig. 4); $R_S = 0$; typical values.

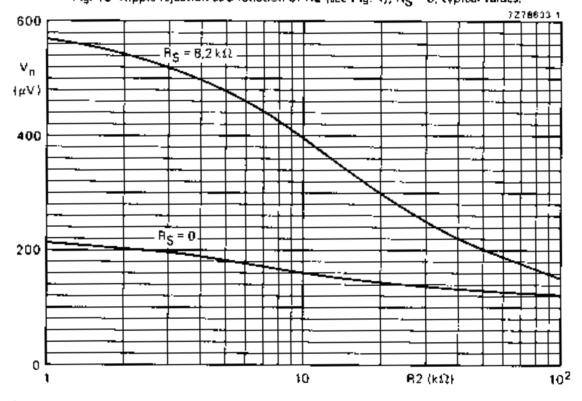


Fig. 11 Noise output voltage as a function of R2 (see Fig. 4); measured according to A-curve; capacitor C5 is adapted for obtaining a constant bandwidth.

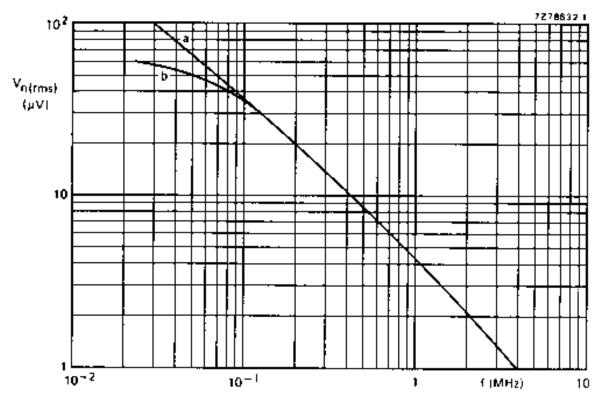


Fig. 12. Noise output voltage as a function of frequency; curve a: total amplifier; curve b: power amplifier; B = 5 kHz; $B_S = 0$; typical values.

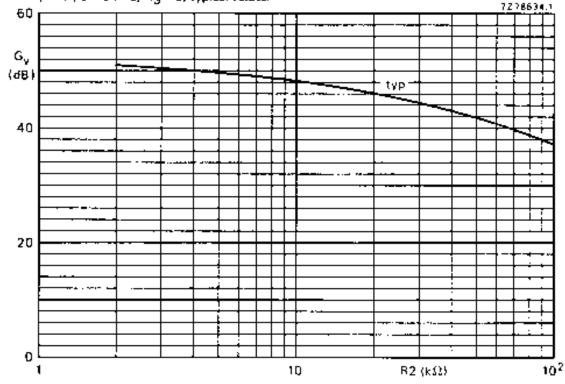


Fig. 13 Voltage gain as a function of R2 (see Fig. 4).