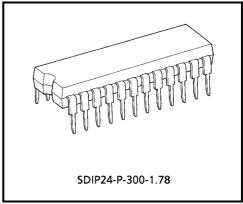
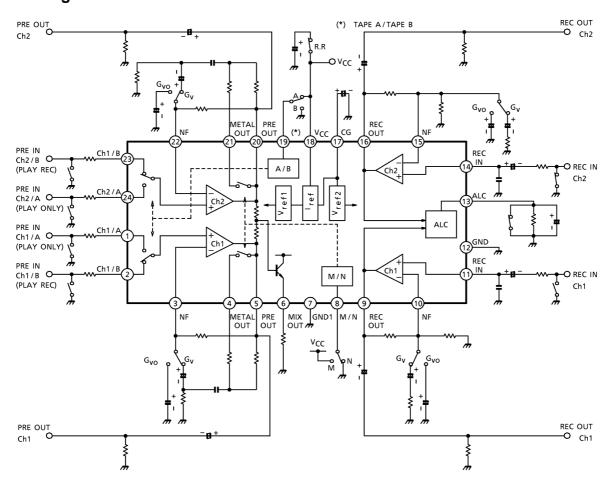
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic


TA8189N

Quad Preamplifier For Double Cassette Tape Recorder

The TA8189N is a quad pre amplifier designed for use in record \prime play back amplifier. It is suitable for double cassette tape recorder.


Features

- Play back amp
 - Built in input select switch.
 - Built in equalizer control switch.
 - Mixing output, for music selection.
- Recording amp
 - Built in ALC detector circuit.
- Operating supply voltage range: $V_{CC (opr)} = 4.0 \sim 13.5 V (Ta = 25 °C)$

Weight: 1.2g (typ.)

Block Diagram

2 2002-10-30

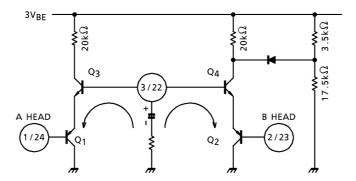
Terminal Explanation

Terminal No.	Symbol	Function	Equivalent Circuit					
1	Tape A in (ch1)	Tape play back input	₹ 3V _{BE}					
24	Tape A in (ch1)	(play)	3/22 NF					
2	Tape B in (ch2)	Tape play back input						
23	Tape B in (ch2)	(play / rec)	1/24 N-A					
3	PB NF (ch1)	Tape play back NF	IN-B GND					
22	PB NF (ch2)	Tape play back IVI	(2/23)					
4 / 21	Metal out	Metal EQ switch	Pre Out 4/21 GND					
5	Pre out (ch1)	—— Play back amp output	V _C C 100Ω 5/20 GND					
20	Pre out (ch2)							
6	Mix out	Mixing output	5/20 VCC 6 GND					
7	GND	GND	_					
8	Metal / normal SW	Change over switch for metal mode and normal mode.	METAL AMP					

3

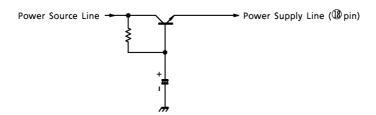
Terminal No.	Symbol	Function	Equivalent Circuit			
9	Rec out (ch1)	- Recording amp output	V _{CC}			
16	Rec out (ch2)	recording amp carpat	GND GND			
10	Rec NF (ch1)	Departing amp NE	30 A BE			
15	Rec NF (ch2)	Recording amp NF	REC NF (10 / 15)			
11	Rec in (ch1)	Recording amp input	200Ω			
14	Rec in (ch2)	Recording amp input	REC IN SOME GND			
12	GND	GND	_			
13	ALC T.C	Automatic level control (ALC) time constant terminal	VCC REC OUT DET NF Charge Circuit ALC Tr GND			
17	CG det.	NF charge up circuit switching terminal	VCC NF Charge Circuit GND			

Terminal No.	Symbol	Function	Equivalent Circuit			
19	Tape A / tape B SW	Play back AMP input selector	VCC TAPE A Reg Reg GND			


Application Information And Application Method

1. Input level of play amp.

In case that input voltage ($V_{in} > 0.0245 V_{rms}$ (-30dBm)) is applied to A-head and B-head at same time on a set, use A-head for reproducing only and, B-head for recording or reproducing.


In case that the over–voltage is applied to A–head and B–head at same time, the transistor Q_3 , Q_4 are made a saturation condition and NF condenser is discharged by base–current of Q_3 , Q_4 and the output DC voltage of pin 3/22 are raised.

In case of the high input, use B-head, because of building in the diode against saturation on Q4.

2. Power source line

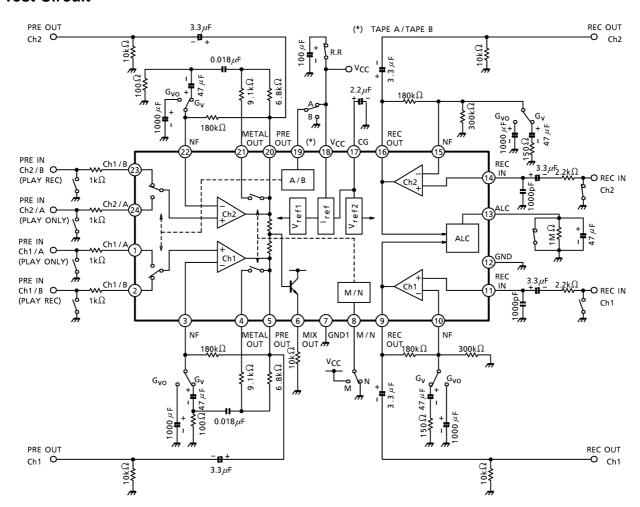
In case of including the ripple on the power source line, stabilize by using a transistor as following figure.

5

Maximum Ratings (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Supply voltage	V _{CC}	14.5	V
Power dissipation	P _D (Note)	1200	mW
Operating temperature	T _{opr}	-20~75	°C
Storage temperature	T _{stg}	-55~150	°C

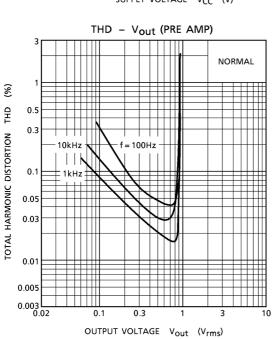
(Note) Derated above Ta = 25° C in the proportion of 9.6mW / $^{\circ}$ C.

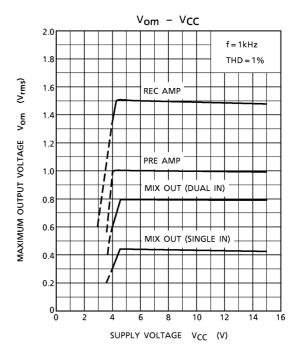

Electrical Characteristics (unless otherwise specified, $V_{CC} = 6V$, f = 1kHz, Ta = 25°C)

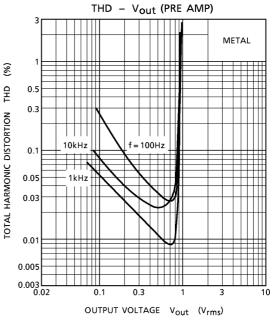
Characteristic Syl		Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit
Quiescent current		I _{CCQ}	_	Metal mode, V _{in} = 0	_	13	20	mA
	Output noise voltage	V _{no}	_	Normal mode, R_g = 2.2k Ω , nab EQ, BW = 20Hz~20kHz, G_V = 40dB	_	200	600	μV _{rms}
	Total harmonic distortion	THD	_	V _{out} = 0.2V _{rms} , f = 1kHz normal mode	_	0.06	0.2	%
	Maximum output voltage	V _{om}	_	THD = 1.0%, R_L = 10k Ω , f = 1kHz, normal mode	0.5	1.0	_	V _{rms}
mp.	Open loop voltage gain	G _{vo}	_	f = 1kHz, R_L = 10k Ω , V_{in} = 13.8μV (–95dBm)	70	95	_	dB
Play back amp.	Cross talk	C.T. (ch)	_	V_{out} = 0.775 V_{rms} (0dBm), f = 1kHz, R_g = 2.2k Ω , normal mode	-40	-60	_	dB
	Tape A / tape B cross talk	C.T. (in)	_	V_{out} = 0.775 V_{rms} (0dBm), f = 1kHz, R_g = 2.2k Ω , normal mode	_	-66	_	dB
	Ripple rejection ratio	R.R.	_	V_{ripple} = 0.775 V_{rms} (0dBm), f_{ripple} = 100Hz, R_{g} = 2.2k Ω , normal mode	_	-38	-	dB
	Voltage gain	G _{vn}	_	V_{in} = 7.75m V_{rms} (–40dBm), f = 1kHz, R_L = 10k Ω , normal nab	_	40	_	dB
Pre amp →rec amp C.T. (P		C.T. (P / R)	_	f = 1kHz, V _{out} (pre) = 0.775V _{rms} (0dBm), normal (pre)	_	-53	_	dB
Rec amp →pre amp C.T. C.T. (R / P)		C.T. (R / P)	_	f = 1kHz, V _{out} (rec) = 0.775V _{rms} (0dBm), normal (pre)	_	-76	_	dB

	Characteristic	Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit
	Output noise voltage	V _{no}	_	R_g = 2.2k Ω , BW = 20Hz~20kHz, ALC off G_V = 60dB	-	1.35	2.7	mV
	Total harmonic distortion	THD	_	$V_{out} = 0.5V_{rms}$, $f = 1kHz$, ALC off $R_L = 10k\Omega$	_	0.37	1.0	%
	Maximum output voltage	V _{om}	_	THD = 1%, R_L = 10k Ω , f = 1kHz, ALC off	1.2	1.5	_	V _{rms}
	Open loop voltage gain	G _{vo}	_	f = 1kHz, R_L = 10kΩ, ALC off, V_{in} = 3.16μ V_{rms} (–110dBV)	80	108	_	dB
	ALC range	R (ALC)	_	3dB up, f = 1kHz, dual input	_	52	_	dB
.dι	Total harmonic distortion (ALC)	THD (ALC)	_	$\begin{aligned} &V_{in} = 0.0775 V_{rms} \ (-20 dBm), \\ &f = 1 kHz \\ &dual \ input, \ R_L = 10 k\Omega \end{aligned}$	_	0.48	1.0	%
Recording amp.	ALC balance	B (ALC)	_	V_{in} = 0.0775 V_{rms} (–20dBm), dual input, R_L = 10k Ω , f = 1kHz	-	0	2	dB
	ALC level	V (ALC)	_	V_{in} = 0.0775 V_{rms} (–20dBm), f = 1kHz, R _L = 10k Ω	0.75	1.0	1.2	V _{rms}
	Ripple rejection ratio	R.R.	_	V_{ripple} = 0.775 V_{rms} (0dBm), f = 100Hz, R_{g} = 2.2k Ω	_	-30	_	dB
	Voltage gain	G _{vn}	_	f = 1kHz (flat), R _L = 10kΩ, V _{in} = 1mV _{rms} (-60dBV)	_	61	_	dB
	Cross talk (ALC off)	C.T. (ch)	_	$\begin{split} &V_{out} = 0.775 V_{rms} \text{ (0dBm)}, \\ &f = 1 \text{kHz, } R_g = 2.2 \text{k}\Omega, \\ &ALC \text{ off,} \\ &V_{in} = 1 \text{mV}_{rms} \text{ (-60dBV)} \end{split}$	-40	-54	_	dB
	Cross talk (ALC on)	C.T. (ALC)	_	V_{out} = 0.775 V_{rms} (0dBm), f = 1kHz, R_g = 2.2k Ω , ALC on, V_{in} = 0.0775 V_{rms} (-20dBm)	-40	-54	_	dB

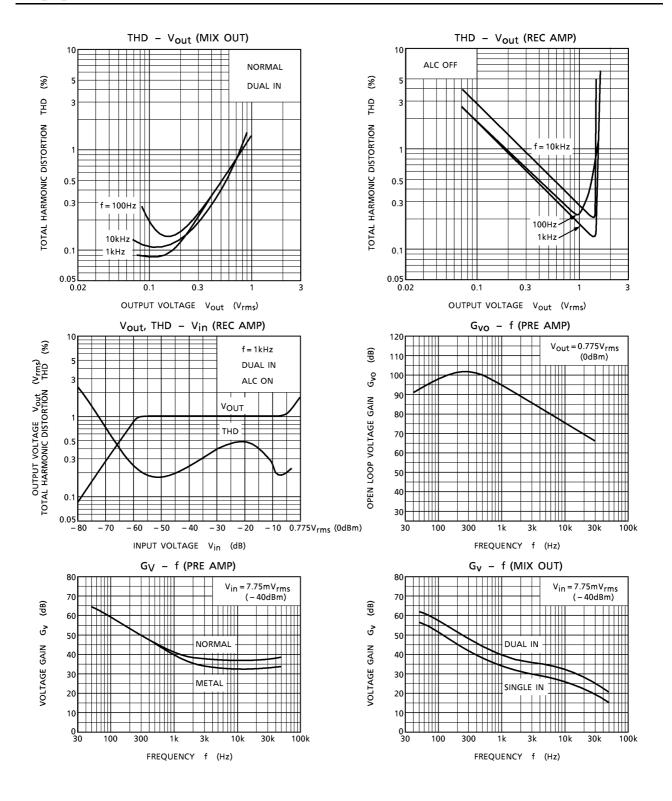
2002-10-30

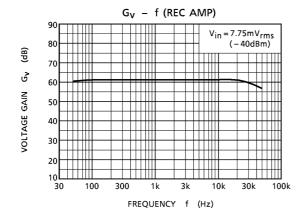

Test Circuit

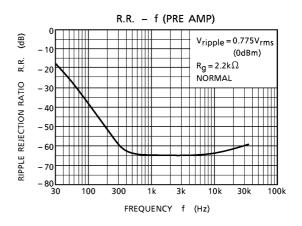


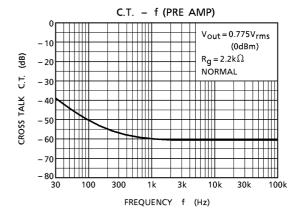

8

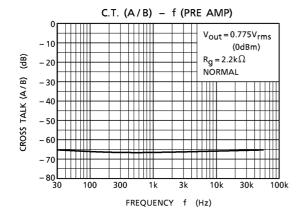
2002-10-30

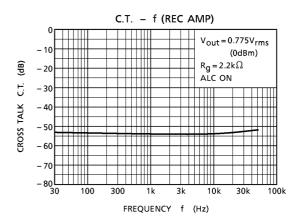


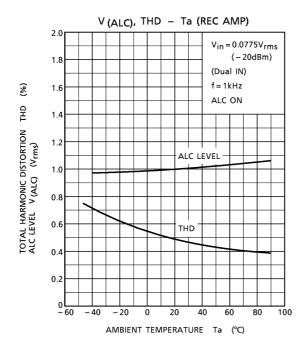


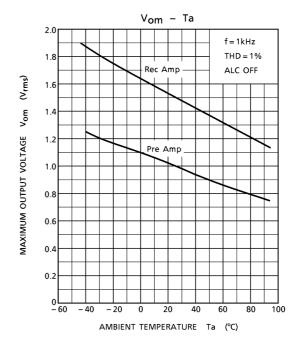


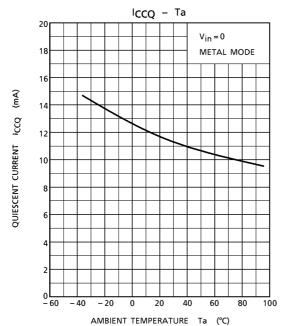

9

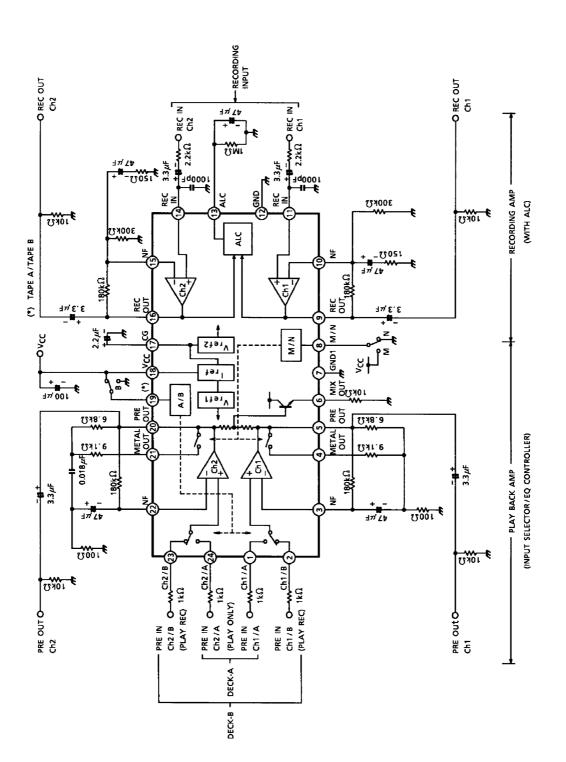


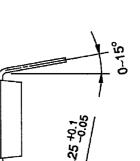






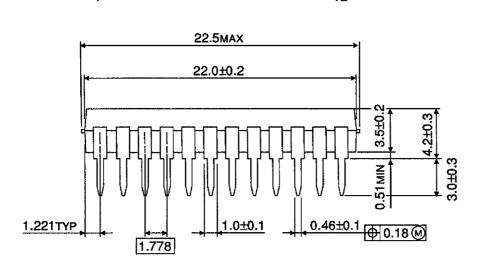






TA8189N - 13

Package Dimensions


SDIP24-P-300-1.78

6.4±0.2

7.62

Unit: mm

Weight: 1.2g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.